Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1/5457/E-189/M/2017
Ministry of Science and Higher Education of the Republic of Poland
T1Zb2/2018
Institutional funding of the Institute of Plant Physiology Polish Academy of Sciences
PubMed
34782682
PubMed Central
PMC8593058
DOI
10.1038/s41598-021-01671-y
PII: 10.1038/s41598-021-01671-y
Knihovny.cz E-zdroje
- MeSH
- azacytidin farmakologie MeSH
- embryonální vývoj * genetika MeSH
- proteom * MeSH
- proteomika * metody MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny genetika metabolismus MeSH
- triticale účinky léků genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azacytidin MeSH
- proteom * MeSH
- rostlinné proteiny MeSH
Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 μM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).
Zobrazit více v PubMed
Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A. Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol. Plant. 2006;127:519–534. doi: 10.1111/j.1399-3054.2006.00675.x. DOI
Islam SM, Tuteja N. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci. 2012;182:134–144. doi: 10.1016/j.plantsci.2011.10.001. PubMed DOI
Segui-Simarro JM, Nuez F. Pathways to doubled haploidy: Chromosome doubling during androgenesis. Cytogenet. Genome Res. 2008;120:358–369. doi: 10.1159/000121085. PubMed DOI
Testillano PS. Microspore embryogenesis: Targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 2019;70:2965–2978. doi: 10.1093/jxb/ery464. PubMed DOI
Niazian M, Shariatpanahi ME. In vitro-based doubled haploid production: recent improvements. Euphytica. 2020 doi: 10.1007/s10681-020-02609-7. DOI
Wędzony, M. et al. in Doubled Haploids in Triticale (ed. F. Eudes) 111–128 (Springer International Publishing, 2015).
Żur I, et al. Triticale and barley microspore embryogenesis induction requires both reactive oxygen species generation and efficient system of antioxidative defence. Plant Cell Tissue Organ Culture (PCTOC) 2021;145:347–366. doi: 10.1007/s11240-021-02012-7. DOI
Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP. Microspore embryogenesis: Assignment of genes to embryo formation and green vs albino plant production. Funct. Integr. Genom. 2009;9:311–323. doi: 10.1007/s10142-009-0113-3. PubMed DOI PMC
Bélanger S, et al. The commitment of barley microspores into embryogenesis correlates with miRNA-directed regulation of members of the SPL, GRF and HD-ZIPIII transcription factor families. Plant Direct. 2020 doi: 10.1002/pld3.289. PubMed DOI PMC
Maraschin SDF, et al. cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol. Plantarum. 2006;127:535–550. doi: 10.1111/j.1399-3054.2006.00673.x. DOI
Seifert F, Bossow S, Kumlehn J, Gnad H, Scholten S. Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena". BMC Plant Biol. 2016;16:97. doi: 10.1186/s12870-016-0782-8. PubMed DOI PMC
Żur I, et al. Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (× Triticosecale Wittm.) Plant Cell Tissue Organ Culture (PCTOC) 2014;116:261–267. doi: 10.1007/s11240-013-0399-7. DOI
Sanchez-Diaz RA, Castillo AM, Valles MP. Microspore embryogenesis in wheat: New marker genes for early, middle and late stages of embryo development. Plant Reprod. 2013;26:287–296. doi: 10.1007/s00497-013-0225-8. PubMed DOI
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI
Cordewener, J., van der Wal, F., Joosen, R., Boutilier, K. & America, T. Proteomics in Rapeseed Microspore Embryogenesis. In Advances in Haploid Production in Higher Plants (eds Touraev, A. et al.) 135–146 (Springer Netherlands, 2009).
Krzewska M, Gołębiowska-Pikania G, Dubas E, Gawin M, Żur I. Identification of proteins related to microspore embryogenesis responsiveness in anther cultures of winter triticale (× Triticosecale Wittm.) Euphytica. 2017 doi: 10.1007/s10681-017-1978-1. DOI
Uváčková L, Takáč T, Boehm N, Obert B, Samaj J. Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J. Proteom. 2012;75:1886–1894. doi: 10.1016/j.jprot.2011.12.033. PubMed DOI
Crouch ML. Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta. 1982;156:520–524. doi: 10.1007/bf00392774. PubMed DOI
Boutilier KA, et al. Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol. Biol. 1994;26:1711–1723. doi: 10.1007/bf00019486. PubMed DOI
Testillano PS, et al. Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J. Struct. Biol. 2000;129:223–232. doi: 10.1006/jsbi.2000.4249. PubMed DOI
Seguí-Simarro JM, Testillano PS, Risueño MC. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J. Struct. Biol. 2003;142:379–391. doi: 10.1016/s1047-8477(03)00067-4. PubMed DOI
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. Front. Plant Sci. 2011;2:53. doi: 10.3389/fpls.2011.00053. PubMed DOI PMC
Solis MT, El-Tantawy AA, Cano V, Risueno MC, Testillano PS. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front. Plant Sci. 2015;6:472. doi: 10.3389/fpls.2015.00472. PubMed DOI PMC
Issa JP, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res. 2009;15:3938–3946. doi: 10.1158/1078-0432.ccr-08-2783. PubMed DOI PMC
El-Tantawy AA, Solis MT, Risueno MC, Testillano PS. Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenet. Genome Res. 2014;143:200–208. doi: 10.1159/000365232. PubMed DOI
Nowicka A, et al. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Sci. 2019;287:110189. doi: 10.1016/j.plantsci.2019.110189. PubMed DOI
Osorio-Montalvo P, Saenz-Carbonell L, De-la-Pena C. 5-Azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int. J. Mol. Sci. 2018 doi: 10.3390/ijms19103182. PubMed DOI PMC
Berenguer E, et al. Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Front. Plant Sci. 2017;8:1161. doi: 10.3389/fpls.2017.01161. PubMed DOI PMC
Żur I, et al. Antioxidant activity and ROS tolerance in triticale (× Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue Organ Culture (PCTOC) 2014;119:79–94. doi: 10.1007/s11240-014-0515-3. DOI
Żur I, et al. Hormonal requirements for effective induction of microspore embryogenesis in triticale (× Triticosecale Wittm.) anther cultures. Plant Cell Rep. 2015;34:47–62. doi: 10.1007/s00299-014-1686-4. PubMed DOI PMC
Żur I, et al. Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm.) Plant Cell Rep. 2019;38:195–209. doi: 10.1007/s00299-018-2362-x. PubMed DOI PMC
Krzewska M, et al. Quantitative trait loci associated with androgenic responsiveness in triticale (× Triticosecale Wittm.) anther culture. Plant Cell Rep. 2012;31:2099–2108. doi: 10.1007/s00299-012-1320-2. PubMed DOI PMC
Krzewska M, Czyczyło-Mysza I, Dubas E, Gołębiowska-Pikania G, Żur I. Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (× Triticosecale Wittm.) anther culture. Euphytica. 2015;206:263–278. doi: 10.1007/s10681-015-1509-x. DOI
Datta R, Chamusco KC, Chourey PS. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 2002;130:1645–1656. doi: 10.1104/pp.006908. PubMed DOI PMC
Varhanikova M, et al. Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency. J. Proteom. 2014;104:57–65. doi: 10.1016/j.jprot.2014.02.003. PubMed DOI
Heringer AS, et al. Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS ONE. 2015;10:e0127803. doi: 10.1371/journal.pone.0127803. PubMed DOI PMC
Gupta D, Tuteja N. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal. Behav. 2011;6:232–236. doi: 10.4161/psb.6.2.15490. PubMed DOI PMC
Nishimura K, van Wijk KJ. Organization, function and substrates of the essential Clp protease system in plastids. Biochem. Biophys. Acta. 1847;915–930:2015. doi: 10.1016/j.bbabio.2014.11.012. PubMed DOI
Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 2014;5:135. doi: 10.3389/fpls.2014.00135. PubMed DOI PMC
Mouysset J, et al. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc. Natl. Acad. Sci. 2008;105:12879–12884. doi: 10.1073/pnas.0805944105. PubMed DOI PMC
Su H, et al. Proteomic variations after short-term heat shock treatment reveal differentially expressed proteins involved in early microspore embryogenesis in cabbage (Brassica oleracea) PeerJ. 2020;8:e8897. doi: 10.7717/peerj.8897. PubMed DOI PMC
Gantulga D, et al. Comparative characterization of the Arabidopsis subfamily a1 beta-galactosidases. Phytochemistry. 2009;70:1999–2009. doi: 10.1016/j.phytochem.2009.08.008. PubMed DOI
Moneo-Sanchez M, Izquierdo L, Martin I, Labrador E, Dopico B. Subcellular location of Arabidopsis thaliana subfamily a1 beta-galactosidases and developmental regulation of transcript levels of their coding genes. Plant Physiol. Biochem. PPB. 2016;109:137–145. doi: 10.1016/j.plaphy.2016.09.016. PubMed DOI
Chugh A, Khurana P. Gene expression during somatic embryogenesis—Recent advances. Curr. Sci. 2002;83:715–730.
Gervais C, Newcomb W, Simmonds DH. Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma. 2000;213:194–202. doi: 10.1007/BF01282157. DOI
Castillo AM, et al. Trichostatin A affects developmental reprogramming of bread wheat microspores towards an embryogenic route. Plants. 2020 doi: 10.3390/plants9111442. PubMed DOI PMC
Betekhtin A, et al. 5-Azacitidine induces cell death in a tissue culture of brachypodium distachyon. Int. J. Mol. Sci. 2018 doi: 10.3390/ijms19061806. PubMed DOI PMC
Nowicka A, et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102:68–84. doi: 10.1111/tpj.14612. PubMed DOI
Saroussi S, Nelson N. The little we know on the structure and machinery of V-ATPase. J. Exp. Biol. 2009;212:1604–1610. doi: 10.1242/jeb.025866. PubMed DOI
Teerawanichpan P, Krittanai P, Chauvatcharin N, Narangajavana J. Purification and characterization of rice DNA methyltransferase. Plant Physiol. Biochem PPB. 2009;47:671–680. doi: 10.1016/j.plaphy.2009.03.014. PubMed DOI
Hsieh TF, et al. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324:1451–1454. doi: 10.1126/science.1172417. PubMed DOI PMC
Maraschin SF, de Priester W, Spaink HP, Wang M. Androgenic switch: An example of plant embryogenesis from the male gametophyte perspective. J. Exp. Bot. 2005;56:1711–1726. doi: 10.1093/jxb/eri190. PubMed DOI
Savona M, et al. Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J. Exp. Bot. 2012;63:471–488. doi: 10.1093/jxb/err295. PubMed DOI
Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. Plant Cell Rep. 2016;35:185–193. doi: 10.1007/s00299-015-1878-6. PubMed DOI
Li Y, et al. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses. J. Plant Interact. 2017;12:279–285. doi: 10.1080/17429145.2017.1339836. DOI
Leljak-Levanic D, Juranic M, De Sprunck S. novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. Plant Reproduct. 2013;26:267–285. doi: 10.1007/s00497-013-0229-4. PubMed DOI
Tyrka M, et al. Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome. 2011;54:391–401. doi: 10.1139/g11-009. PubMed DOI
Wędzony, M. Tissue Culture and Regeneration: A Prerequisite for Alien Gene Transfer. In Doubled Haploid Production in Crop Plants: A Manual (eds Maluszynski, M. et al.) 135–140 (Springer Netherlands, 2003).
Żur I, et al. Molecular mapping of loci associated with abscisic acid accumulation in triticale (× Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. Plant Growth Regulat. 2012;68:483–492. doi: 10.1007/s10725-012-9738-7. DOI
Wang P, Chen Y. Preliminary study on prediction of height of pollen H2 generation in winter wheat grown in the field. Induction Acta Agron Sin. 1983;9:283–284.
Zhuang JJ, Xu J. Increasing differentiation frequencies in wheat pollen callus. In Cell and Tissue Culture Techniques for Cereal Crop Improvement (eds Vega, M.R. & Hu, H.) 431 (Science Press, 1983).
Klubicova K, et al. Agricultural recovery of a formerly radioactive area: II. Systematic proteomic characterization of flax seed development in the remediated Chernobyl area. J. Proteom. 2011;74:1378–1384. doi: 10.1016/j.jprot.2011.02.029. PubMed DOI
Hartman K, Mielczarek P, Silberring J. Synthesis of the novel covalent cysteine proteases inhibitor with iodoacetic functional group. Molecules. 2020 doi: 10.3390/molecules25040813. PubMed DOI PMC
Drabik A, et al. Advances in the study of aptamer-protein target identification using the chromatographic approach. J. Proteome Res. 2018;17:2174–2181. doi: 10.1021/acs.jproteome.8b00122. PubMed DOI
Thomas M, et al. Evolutionary history of Methyltransferase 1 genes in hexaploid wheat. BMC Genom. 2014;15:922. doi: 10.1186/1471-2164-15-922. PubMed DOI PMC