On stress in abdominal aortic aneurysm: Linear versus non-linear analysis and aneurysm rupture risk
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34806314
DOI
10.1002/cnm.3554
Knihovny.cz E-zdroje
- Klíčová slova
- abdominal aortic aneurysm, finite element method, patient-specific modelling, rupture, stress,
- MeSH
- analýza metodou konečných prvků MeSH
- aneurysma břišní aorty * MeSH
- aorta abdominalis MeSH
- biomechanika MeSH
- lidé MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- ruptura aorty * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We present comprehensive biomechanical analyses of abdominal aortic aneurysms (AAA) for 43 patients. We compare stress magnitudes and stress distributions within arterial walls of abdominal aortic aneurysms (AAA) obtained using two simulation and modelling methods: (a) Fully automated and computationally very efficient linear method embedded in the software platform Biomechanics based Prediction of Aneurysm Rupture Risk (BioPARR), freely available from https://bioparr.mech.uwa.edu.au/; (b) More complex and much more computationally demanding Non-Linear Iterative Stress Analysis (Non-LISA) that uses a non-linear inverse iterative approach and strongly non-linear material model. Both methods predicted localised high stress zones with over 90% of AAA model volume fraction subjected to stress below 20% of the 99th percentile maximum principal stress. However, for the non-linear iterative method, the peak maximum principal stress (and 99th percentile maximum principal stress) was higher and the stress magnitude in the low stress area lower than for the automated linear method embedded in BioPARR. Differences between the stress distributions obtained using the two methods tended to be particularly pronounced in the areas where the AAA curvature was large. Performance of the selected characteristic features of the stress fields (we used 99th percentile maximum principal stress) obtained using BioPARR and Non-LISA in distinguishing between the AAAs that would rupture and remain intact was for practical purposes the same for both methods.
Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
Department of Applied Mechanics VSB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
ANZSVS. Patient information - Aortic aneurysm screening, 2017. Available from: http://www.anzsvs.org.au/patient-information/aortic-aneurysm-screening/.
The Lancet. Causes of death (COD) visualization 2020. Available from: https://www.thelancet.com/lancet/visualisations/cause-of-death.
Wanhainen A, Verzini F, Van Herzeele I, et al. Editor's choice - European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg. 2019;57(1):8-93.
National Institute for Health and Care Excellence. Abdominal aortic aneurysm: diagnosis and management. NICE guideline [NG156], 2019; https://www.nice.org.uk/guidance/ng156
Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. the case for early resection circulation. Circulation. 1977;56(3):161-164.
Greenhalgh RM, Brown LC, Kwong GP, Powell JT, Thompson SG. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet. 2004;364(9437):843-848.
Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 2010;40(2):176-185.
Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech. 2007;40(9):1887-1902.
Polzer S, Gasser T, Vlachovský R, et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020;71:617-626.
Bruder L, Pelisek J, Eckstein H-H, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: a patient-specific, probabilistic framework and comparative case-control study. PLoS One. 2020;15(11):e0242097-1-27.
Vorp DA, Geest JPV. Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol. 2005;25(8):1558-1566.
Gasser TC. Biomechanical rupture risk assessment: a consistent and objective decisionmaking tool for abdominal aortic aneurysm patients. Aorta. 2016;4(2):42-60.
Khosla S, Morris DR, Moxon JV, et al. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. BJS. 2014;101(11):1350-1357.
McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment. Arterioscler Thromb Vasc Biol. 2010;30(9):1687-1694.
Miller K, Mufty H, Catlin A, et al. Is there a relationship between stress in walls of abdominal aortic aneurysm and symptoms? J Surg Res. 2020;252:37-46.
Miller, K., G.R. Joldes and A. Wittek, Does aneurysm biomechanical ratio predict rupture or repair in patients with abdominal aortic aneurysm? Intelligent Systems for Medicine Laboratory Report # ISML/01/2020, The University of Western Australia, 2020: 1-5. https://isml.ecm.uwa.edu.au/ISML/index.php/Archived_Reports.
Wittek A, Mufty H, Catlin A, et al. Image, geometry and finite element mesh datasets for analysis of relationship between abdominal aortic aneurysm symptoms and stress in walls of abdominal aortic aneurysm. Data in Brief. 2020;5451:1-6.
Chuong CJ, Fung YC. On residual stresses in arteries. J Biomech Eng. 1986;108(2):189-192.
Fung Y. What are the residual stresses doing in our blood vessels? Ann Biomed Eng. 1991;19(3):237-249.
Bols J, Degroote J, Trachet B, et al. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math. 2013;246:10-17.
Polzer S, Bursa J, Gasser TC, Staffa R, Vlachovsky R. A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann Biomed Eng. 2013;41(7):1516-1527.
Joldes GR, Miller K, Wittek A, Doyle B. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J Mech Behav Biomed Mater. 2016;58:139-148.
Joldes GR, Miller K, Wittek A, et al. BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci Rep. 2017;7:1-15.
Man V, Polzer S, Gasser TC, Novotny T, Bursa J. Impact of isotropic constitutive descriptions on the predicted peak wall stress in abdominal aortic aneurysms. Med Eng Phys. 2018;53:49-57.
Polzer S, Gasser TC, Bursa J, et al. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med Eng Phys. 2013;35(9):1282-1289. https://doi.org/10.1016/j.medengphy.2013.01.008
Polzer S, Gasser TC. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J R Soc Interf. 2015;12(113):1-11.
Lu J, Zhou X, Raghavan ML. Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int J Numer Methods Eng. 2007;69(6):1239-1261. https://doi.org/10.1002/nme.1807
Lu J, Zhou X, Raghavan ML. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech. 2007;40(3):693-696.
Biehler J, Gee MW, Wall WA. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme. Biomech Model Mechanobiol. 2015;14(3):489-513.
Zelaya JE, Goenezen S, Dargon PT, Azarbal A-F, Rugonyi S. Improving the efficiency of abdominal aortic aneurysm wall stress computations. PloS One. 2014;9(7):e101353-1-18.
Liu M, Liang L, Liu H, et al. On the computation of in vivo transmural mean stress of patient-specific aortic wall. Biomech Model Mechanobiol. 2019;18(2):387-398.
Joldes GR, Noble C, Polzer S, et al. A simple method of incorporating the effect of the uniform stress hypothesis in arterial wall stress computations. Acta Bioeng Biomech. 2018;20(3):59-67.
Simulia-Dassault Systemes, ABAQUS 2018 Online Documentation, 2018.
Fung YC, Liu SQ. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res. 1989;65(5):1340-1349.
de Putter S, Wolters BJBM, Rutten MCM, et al. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J Biomech. 2007;40(5):1081-1090.
ANSYS, I., ANSYS® Academic Research, Release 19.0, 2020.
Geuzaine C, Remacle JF. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309-1331. https://doi.org/10.1002/nme.2579
Geuzaine, C. and J.-F. Remacle. GMSH - A three-dimensional finite element mesh generator with built-in pre- and postprocessing facilities. 2019; http://gmsh.info/.
Man V, Polzer S, Bursa J. Influence of mesh density on calculated extreme stresses in aortic aneurysms. Appl Comput Mechan. 2016;10:97-110.
Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. Local quantification of wall thickness and intraluminal thrombus offer insight into the mechanical properties of the aneurysmal aorta. Ann Biomed Eng. 2015;43(8):1759-1771.
Thubrikar M, Robicsek F, Labrosse M, Chervenkoff V, Fowler B. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg. 2003;44:67-77.
Polzer S, Gasser TC, Swedenborg J, Bursa J. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2011;41(4):467-473.
Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online. 2012;11:1-13.
Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R. Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg. 1993;7(6):667-674.
Vorp DA, Mandarino WA, Webster MW, Gorcsan J. Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc Surg. 1996;4(6):732-739.
Schurink GWH, van Baalen JM, Visser MJT, van Bockel JH. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg. 2000;31(3):501-506.
Asbury CL, Ruberti JW, Bluth EI, Peattie RA. Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann Biomed Eng. 1995;23(1):29-39.
Peattie RA, Riehle TJ, Bluth EI. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng. 2004;126(4):438-446.
Lin S, Han X, Bi Y, Ju S, Gu L. Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques. Biomed Res Int. 2017;v2017:7023078-1-10.
Di Martino ES, Bohra A, Vande Geest JP, et al. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg. 2006;43(3):570-576.
O'Leary SA, Kavanagh EG, Grace PA, McGloughlin TM, Doyle BJ. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. J Biomech. 2014;47(6):1430-1437.
Tong J, Cohnert T, Regitnig P, Holzapfel GA. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur J Vasc Endovasc Surg. 2011;42(2):207-219.
Yeoh OH. Some forms of strain-energy function for rubber. Rubber Chem Technol. 1993;66:754-771. https://doi.org/10.5254/1.3538343
Vande Geest JP, Wang DHJ, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng. 2006;34(7):1098-1106.
Gasser TC, Görgülü G, Folkesson M, Swedenborg J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg. 2008;48(1):179-188.
Ansys Solution and Postprocessing. The Finite Element Method and Applications in Engineering Using Ansys®. Springer US; 2006:149-186.
Speelman L, Bosboom EMH, Schurink GWH, et al. Patient-specific AAA wall stress analysis: 99-percentile versus peak stress. Eur J Vasc Endovasc Surg. 2008;36(6):668-676.
Noronen K, Laukontaus S, Kantonen I, et al. Quality assessment of elective abdominal aortic aneurysm repair from referral to surgery. Vasa. 2015;44(2):115-121.
Soto B, Vila L, Dilmé JF, et al. Increased peak wall stress, but not maximum diameter, is associated with symptomatic abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2017;54(6):706-711.
Moll FL, Powell JT, Fraedrich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011;41:1-58.
Biehler J, Kehl S, Gee MW, et al. Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression. Biomech Model Mechanobiol. 2017;16(1):45-61.