Secretome Analysis of Rabbit and Human Mesenchymal Stem and Endothelial Progenitor Cells: A Comparative Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-14-0348
Slovak Research and Development Agency
APVV-18-0146
Slovak Research and Development Agency
1/0160/18
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
34830165
PubMed Central
PMC8625496
DOI
10.3390/ijms222212283
PII: ijms222212283
Knihovny.cz E-zdroje
- Klíčová slova
- EPCs, MSCs, adipose tissue, cytokine array, rabbit,
- MeSH
- endoteliální buňky pupečníkové žíly (lidské) metabolismus MeSH
- endoteliální progenitorové buňky metabolismus MeSH
- králíci MeSH
- lidé MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- sekretom metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) have been studied several years for their immunomodulatory effect through the paracrine mechanism and cytokine secretion. In combination with endothelial progenitor cells (EPCs), MSCs have great therapeutical potential for the repair of endothelium and wound healing. However, little is known about the cytokine profile of rabbit AT-MSCs or even EPCs. The aim of this study was to analyze the secretomes of these rabbit stem/progenitor cells. A large-scale human cytokine array (up to 80 cytokines) was used to identify and compare cytokines secreted into conditioned media of human and rabbit AT-MSCs as well as HUVECs and rabbit EPCs. Few cytokines were highly expressed by human AT-MSCs (TIMP-2, TIMP-1), HUVECs (MCP-1, TIMP-2, GRO, Angiogenin, IL-8, TIMP-1), or by rabbit EPCs (TIMP-2). Several cytokines have moderate expression by human (MCP-1, GRO, Angiogenin, TGF-β 2, IL-8, LIF, IL-6, Osteopontin, Osteoprotegerin) and rabbit AT-MSCs (TIMP-2, TGF-β 2, LIF, Osteopontin, IL-8, IL-5, IL-3) or by HUVECs (IL-6, MIF, TGF-β 2, GCP-2, IGFBP-2, Osteoprotegerin, EGF, LIF, PDGF-BB, MCP-3, Osteopontin, Leptin, IL-5, ENA-78, TNF-β) and rabbit EPCs (TGF-β 2, Osteopontin, GRO, LIF, IL-8, IL-5, IL-3). In conclusion, the proposed method seems to be useful for the secretome analysis of rabbit stem/progenitor cells.
Zobrazit více v PubMed
Torensma R., Prins H.J., Schrama E., Verwiel E.T.P., Martens A.C.M., Roelofs H., Jansen B.J.H. The Impact of Cell Source, Culture Methodology, Culture Location, and Individual Donors on Gene Expression Profiles of Bone Marrow-Derived and Adipose-Derived Stromal Cells. Stem Cells Dev. 2013;22:1086–1096. doi: 10.1089/scd.2012.0384. PubMed DOI PMC
Vasicek J., Kovac M., Balazi A., Kulikova B., Tomkova M., Olexikova L., Curlej J., Bauer M., Schnabl S., Hilgarth M., et al. Combined approach for characterization and quality assessment of rabbit bone marrow-derived mesenchymal stem cells intended for gene banking. New Biotechnol. 2020;54:1–12. doi: 10.1016/j.nbt.2019.08.001. PubMed DOI
De Coppi P., Bartsch G., Siddiqui M.M., Xu T., Santos C.C., Perin L., Mostoslavsky G., Serre A.C., Snyder E.Y., Yoo J.J., et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 2007;25:100–106. doi: 10.1038/nbt1274. PubMed DOI
Kovac M., Vasicek J., Kulikova B., Bauer M., Curlej J., Balazi A., Chrenek P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol. Prog. 2017;33:1601–1613. doi: 10.1002/btpr.2519. PubMed DOI
Tirpakova M., Vasicek J., Svoradova A., Balazi A., Tomka M., Bauer M., Makarevich A., Chrenek P. Phenotypical Characterization and Neurogenic Differentiation of Rabbit Adipose Tissue-Derived Mesenchymal Stem Cells. Genes. 2021;12:431. doi: 10.3390/genes12030431. PubMed DOI PMC
Wu Y.K., Hoogduijn M.J., Baan C.C., Korevaar S.S., de Kuiper R., Yan L., Wang L.L., van Besouw N.M. Adipose Tissue-Derived Mesenchymal Stem Cells Have a Heterogenic Cytokine Secretion Profile. Stem Cells Int. 2017;2017:7. doi: 10.1155/2017/4960831. PubMed DOI PMC
Puissant N., Barreau C., Bourin P., Clavel C., Corre J., Bousquet C., Taureau C., Cousin B., Abbal M., Laharrague P., et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 2005;129:118–129. doi: 10.1111/j.1365-2141.2005.05409.x. PubMed DOI
Schinkothe T., Bloch W., Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008;17:199–205. doi: 10.1089/scd.2007.0175. PubMed DOI
Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967. doi: 10.1126/science.275.5302.964. PubMed DOI
Rehman J., Li J.L., Orschell C.M., March K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–1169. doi: 10.1161/01.CIR.0000058702.69484.A0. PubMed DOI
Kinnaird T., Stabile E., Burnett M.S., Lee C.W., Barr S., Fuchs S., Epstein S.E. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 2004;94:678–685. doi: 10.1161/01.RES.0000118601.37875.AC. PubMed DOI
Vasicek J., Balazi A., Bauer M., Svoradova A., Tirpakova M., Tomka M., Chrenek P. Molecular Profiling and Gene Banking of Rabbit EPCs Derived from Two Biological Sources. Genes. 2021;12:366. doi: 10.3390/genes12030366. PubMed DOI PMC
Noverina R., Widowati W., Ayuningtyas W., Kurniawan D., Afifah E., Laksmitawati D.R., Rinendyaputri R., Rilianawati R., Faried A., Bachtiar I. Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs) Clin. Nutr. Exp. 2019;24:34–44. doi: 10.1016/j.yclnex.2019.01.002. DOI
Dmitrieva R.I., Minullina I.R., Bilibina A.A., Tarasova O.V., Anisimov S.V., Zaritskey A.Y. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells Differences and similarities. Cell Cycle. 2012;11:377–383. doi: 10.4161/cc.11.2.18858. PubMed DOI
Banas A., Teratani T., Yamamoto Y., Tokuhara M., Takeshita F., Osaki M., Kawamata M., Kato T., Okochi H., Ochiya T. IFATS Collection: In Vivo Therapeutic Potential of Human Adipose Tissue Mesenchymal Stem Cells after Transplantation into Mice with Liver Injury. Stem Cells. 2008;26:2705–2712. doi: 10.1634/stemcells.2008-0034. PubMed DOI
Linero I., Chaparro O. Paracrine Effect of Mesenchymal Stem Cells Derived from Human Adipose Tissue in Bone Regeneration. PLoS ONE. 2014;9:e107001. doi: 10.1371/journal.pone.0107001. PubMed DOI PMC
Fan L.H., Zhang C., Yu Z.F., Shi Z.B., Dang X.Q., Wang K.Z. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and osteogenesis in rabbit femoral head osteonecrosis. Bone. 2015;81:544–553. doi: 10.1016/j.bone.2015.09.005. PubMed DOI
Liu Y., Liu T.Q., Ma X.H., Fan X.B., Bao C.Y., Cui Z.F. Effects of encapsulated rabbit mesenchymal stem cells on ex vivo expansion of human umbilical cord blood hematopoietic stem/progenitor cells. J. Microencapsul. 2009;26:130–142. doi: 10.1080/02652040802193014. PubMed DOI
He T.R., Smith L.A., Harrington S., Nath K.A., Caplice N.M., Katusic Z.S. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke. 2004;35:2378–2384. doi: 10.1161/01.STR.0000141893.33677.5d. PubMed DOI
Block T.J., Marinkovic M., Tran O.N., Gonzalez A.O., Marshall A., Dean D.D., Chen X.D. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res. Ther. 2017;8:13. doi: 10.1186/s13287-017-0688-x. PubMed DOI PMC
Chen C., Zhang R., Ma L., Li Q., Zhao Y.L., Zhang G.J., Zhang D., Li W.Z., Cao S., Wang L., et al. Neuropilin-1 is up-regulated by cancer-associated fibroblast-secreted IL-8 and associated with cell proliferation of gallbladder cancer. J. Cell. Mol. Med. 2020;24:12608–12618. doi: 10.1111/jcmm.15825. PubMed DOI PMC
Li X.T., Fang T., Xu S., Jin P., Zhou D.C., Wang Z.Z., Li H.Y., Yang Z.Y., Chen G., Zheng X., et al. PARP inhibitors promote stromal fibroblast activation by enhancing CCL5 autocrine signaling in ovarian cancer. Npj Precis. Oncol. 2021;5:13. doi: 10.1038/s41698-021-00189-w. PubMed DOI PMC
White U.A., Stephens J.M. The gp130 Receptor Cytokine Family: Regulators of Adipocyte Development and Function. Curr. Pharm. Des. 2011;17:340–346. doi: 10.2174/138161211795164202. PubMed DOI PMC
Dinarello C.A. Historical insights into cytokines. Eur. J. Immunol. 2007;37:S34–S45. doi: 10.1002/eji.200737772. PubMed DOI PMC
Francisco V., Pino J., Gonzalez-Gay M.A., Mera A., Lago F., Gomez R., Mobasheri A., Gualillo O. Adipokines and inflammation: Is it a question of weight? Br. J. Pharmacol. 2018;175:1569–1579. doi: 10.1111/bph.14181. PubMed DOI PMC
Raucci R., Rusolo F., Sharma A., Colonna G., Castello G., Costantini S. Functional and structural features of adipokine family. Cytokine. 2013;61:1–14. doi: 10.1016/j.cyto.2012.08.036. PubMed DOI
Liu C.H., Hwang S.M. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005;32:270–279. doi: 10.1016/j.cyto.2005.11.003. PubMed DOI
Hwang J.H., Shim S.S., Seok O.S., Lee H.Y., Woo S.K., Kim B.H., Song H.R., Lee J.K., Park Y.K. Comparison of Cytokine Expression in Mesenchymal Stem Cells from Human Placenta, Cord Blood, and Bone Marrow. J. Korean Med. Sci. 2009;24:547–554. doi: 10.3346/jkms.2009.24.4.547. PubMed DOI PMC
Park C.W., Kim K.-S., Bae S., Son H.K., Myung P.-K., Hong H.J., Kim H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells. 2009;2:59–68. doi: 10.15283/ijsc.2009.2.1.59. PubMed DOI PMC
Nakanishi C., Nagaya N., Ohnishi S., Yamahara K., Takabatake S., Konno T., Hayashi K., Kawashiri M.A., Tsubokawa T., Yamagishi M. Gene and Protein Expression Analysis of Mesenchymal Stem Cells Derived from Rat Adipose Tissue and Bone Marrow. Circ. J. 2011;75:2260–2268. doi: 10.1253/circj.CJ-11-0246. PubMed DOI
Urbich C., Aicher A., Heeschen C., Dernbach E., Hofmann W.K., Zeiher A.M., Dimmeler S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 2005;39:733–742. doi: 10.1016/j.yjmcc.2005.07.003. PubMed DOI
Kim J.Y., Song S.H., Kim K.L., Ko J.J., Im J.E., Yie S.W., Ahn Y.K., Kim D.K., Suh W. Human Cord Blood-Derived Endothelial Progenitor Cells and Their Conditioned Media Exhibit Therapeutic Equivalence for Diabetic Wound Healing. Cell Transplant. 2010;19:1635–1644. doi: 10.3727/096368910X516637. PubMed DOI
Di Santo S., Fuchs A.L., Periasamy R., Seiler S., Widmer H.R. The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium against an Ischemic Insult Are Not Dependent on VEGF and IL-8. Cell Transplant. 2016;25:735–747. doi: 10.3727/096368916X690458. PubMed DOI
Di Santo S., Seiler S., Fuchs A.L., Staudigl J., Widmer H.R. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase. PLoS ONE. 2014;9:e95731. doi: 10.1371/journal.pone.0095731. PubMed DOI PMC
Di Santo S., Yang Z.J., von Ballmoos M.W., Voelzmann J., Diehm N., Baumgartner I., Kalka C. Novel Cell-Free Strategy for Therapeutic Angiogenesis: In Vitro Generated Conditioned Medium Can Replace Progenitor Cell Transplantation. PLoS ONE. 2009;4:e5643. doi: 10.1371/journal.pone.0005643. PubMed DOI PMC
Zubarev R.A. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13:723–726. doi: 10.1002/pmic.201200451. PubMed DOI
Geyer P.E., Kulak N.A., Pichler G., Holdt L.M., Teupser D., Mann M. Plasma Proteome Profiling to Assess Human Health and Disease. Cell Syst. 2016;2:185–195. doi: 10.1016/j.cels.2016.02.015. PubMed DOI
Cretich M., Damin F., Chiari M. Protein microarray technology: How far off is routine diagnostics? Analyst. 2014;139:528–542. doi: 10.1039/C3AN01619F. PubMed DOI
Bussche L., Harman R.M., Syracuse B.A., Plante E.L., Lu Y.C., Curtis T.M., Ma M.L., Van de Walle G.R. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res. Ther. 2015;6:15. doi: 10.1186/s13287-015-0037-x. PubMed DOI PMC
Bussche L., Van de Walle G.R. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Transl. Med. 2014;3:1514–1525. doi: 10.5966/sctm.2014-0138. PubMed DOI PMC