In Vivo Secretion of β-Lactamase-Carrying Outer Membrane Vesicles as a Mechanism of β-Lactam Therapy Failure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
194468054 - SFB 1009, B04
Deutsche Forschungsgemeinschaft (DFG)
NIPH 75010330
Ministry of Health
PubMed
34832035
PubMed Central
PMC8625792
DOI
10.3390/membranes11110806
PII: membranes11110806
Knihovny.cz E-zdroje
- Klíčová slova
- GAS protection, Haemophilus influenzae, amoxicillin therapy failure, group A Streptococcus pyogenes (GAS), in vivo secretion, pharyngotonsillitis, β-lactamase-carrying outer membrane vesicles,
- Publikační typ
- časopisecké články MeSH
Outer membrane vesicles carrying β-lactamase (βLOMVs) protect bacteria against β-lactam antibiotics under experimental conditions, but their protective role during a patient's treatment leading to the therapy failure is unknown. We investigated the role of βLOMVs in amoxicillin therapy failure in a patient with group A Streptococcus pyogenes (GAS) pharyngotonsillitis. The patient's throat culture was examined by standard microbiological procedures. Bacterial vesicles were analyzed for β-lactamase by immunoblot and the nitrocefin assay, and in vivo secretion of βLOMVs was detected by electron microscopy. These analyses demonstrated that the patient's throat culture grew, besides amoxicillin-susceptible GAS, an amoxicillin-resistant nontypeable Haemophilus influenzae (NTHi), which secreted βLOMVs. Secretion and β-lactamase activity of NTHi βLOMVs were induced by amoxicillin concentrations reached in the tonsils during therapy. The presence of NTHi βLOMVs significantly increased the minimal inhibitory concentration of amoxicillin for GAS and thereby protected GAS against bactericidal concentrations of amoxicillin. NTHi βLOMVs were identified in the patient's pharyngotonsillar swabs and saliva, demonstrating their secretion in vivo at the site of infection. We conclude that the pathogen protection via βLOMVs secreted by the flora colonizing the infection site represents a yet underestimated mechanism of β-lactam therapy failure that warrants attention in clinical studies.
2nd Medical Faculty Charles University 150 06 Prague Czech Republic
Institute for Hygiene University Hospital Münster 48149 Münster Germany
Institute of Medical Microbiology University Hospital Motol 150 06 Prague Czech Republic
Zobrazit více v PubMed
Shulman S.T., Bisno A.L., Clegg H.W., Gerber M.A., Kaplan E.L., Lee G., Martin J.M., Van Beneden C. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2012;55:e86–e102. doi: 10.1093/cid/cis629. PubMed DOI PMC
Brook I. Overcoming penicillin failures in the treatment of Group A streptococcal pharyngo-tonsillitis. Int. J. Pediatr. Otorhinolaryngol. 2007;71:1501–1508. doi: 10.1016/j.ijporl.2007.06.006. PubMed DOI
Ellis T.N., Kuehn M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010;74:81–94. doi: 10.1128/MMBR.00031-09. PubMed DOI PMC
Toyofuku M., Nomura N., Eberl L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019;17:13–24. doi: 10.1038/s41579-018-0112-2. PubMed DOI
Guerrero-Mandujano A., Hernández-Cortez C., Ibarra J.A., Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic. 2017;18:425–432. doi: 10.1111/tra.12488. PubMed DOI
Schwechheimer C., Kuehn M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. PubMed DOI PMC
Roier S., Zingl F.G., Cakar F., Durakovic S., Kohl P., Eichmann T.O., Klug L., Gadermaier B., Weinzerl K., Prassl R., et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 2016;7:10515. doi: 10.1038/ncomms10515. PubMed DOI PMC
MacDonald I.A., Kuehn M.J. Offense and defense: Microbial membrane vesicles play both ways. Res. Microbiol. 2012;163:607–618. doi: 10.1016/j.resmic.2012.10.020. PubMed DOI PMC
Caruana J.C., Walper S.A. Bacterial membrane vesicles as mediators of microbe—Microbe and microbe—Host community interactions. Front. Microbiol. 2020;11:432. doi: 10.3389/fmicb.2020.00432. PubMed DOI PMC
Rueter C., Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles. Front. Cell. Infect. Microbiol. 2020;10:91. doi: 10.3389/fcimb.2020.00091. PubMed DOI PMC
Tan T.T., Morgelin M., Forsgren A., Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J. Infect. Dis. 2007;195:1661–1670. doi: 10.1086/517611. PubMed DOI
Namork E., Brandtzaeg P. Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet. 2002;360:1741. doi: 10.1016/S0140-6736(02)11721-1. PubMed DOI
McBroom A.J., Kuehn M.J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 2007;63:545–558. doi: 10.1111/j.1365-2958.2006.05522.x. PubMed DOI PMC
Orench-Rivera N., Kuehn M.J. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 2016;18:1525–1536. doi: 10.1111/cmi.12676. PubMed DOI PMC
Bauwens A., Kunsmann L., Marejková M., Zhang W., Karch H., Bielaszewska M., Mellmann A. Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4. Environ. Microbiol. Rep. 2017;9:626–634. doi: 10.1111/1758-2229.12562. PubMed DOI
Bauwens A., Kunsmann L., Karch H., Mellmann A., Bielaszewska M. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrob. Agents Chemother. 2017;61:e00937-17. doi: 10.1128/AAC.00937-17. PubMed DOI PMC
Devos S., Van Oudenhove L., Stremersch S., Van Putte W., De Rycke R., Van Driessche G., Vitse J., Raemdonck K., Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front. Microbiol. 2015;6:298. doi: 10.3389/fmicb.2015.00298. PubMed DOI PMC
Devos S., Stremersch S., Raemdonck K., Braeckmans K., Devreese B. Intra- and interspecies effects of outer membrane vesicles from Stenotrophomonas maltophilia on β-lactam resistance. Antimicrob. Agents Chemother. 2016;60:2516–2518. doi: 10.1128/AAC.02171-15. PubMed DOI PMC
Maredia R., Devineni N., Lentz P., Dallo S.F., Yu J., Guentzel N., Chambers J., Arulanandam B., Haskins W.E., Weitao T. Vesiculation from Pseudomonas aeruginosa under SOS. Sci. World J. 2012;2012:402919. doi: 10.1100/2012/402919. PubMed DOI PMC
Kulkarni H.M., Nagaraj R., Jagannadham M.V. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol. Res. 2015;181:1–7. doi: 10.1016/j.micres.2015.07.008. PubMed DOI
Manning A.J., Kuehn M.J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011;11:258. doi: 10.1186/1471-2180-11-258. PubMed DOI PMC
Schaar V., Nordström T., Mörgelin M., Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 2011;55:3845–3853. doi: 10.1128/AAC.01772-10. PubMed DOI PMC
Schaar V., Uddbäck I., Nordström T., Riesbeck K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. J. Antimicrob. Chemother. 2013;69:117–120. doi: 10.1093/jac/dkt307. PubMed DOI
Kim S.W., Park S.B., Im S.P., Lee J.S., Jung J.W., Gong T.W., Lazarte J.M.S., Kim J., Seo J.S., Kim J.H., et al. Outer membrane vesicles from beta-lactam-resistant Escherichia coli enable the survival of beta-lactam-susceptible E. coli in the presence of beta-lactam antibiotics. Sci. Rep. 2018;8:5402. doi: 10.1038/s41598-018-23656-0. PubMed DOI PMC
Stentz R., Horn N., Cross K., Salt L., Brearley C., Livermore D.M., Carding S.R. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics. J. Antimicrob. Chemother. 2015;70:701–709. doi: 10.1093/jac/dku466. PubMed DOI PMC
González L.J., Bahr G., Nakashige T.G., Nolan E.M., Bonomo R.A., Vila A.J. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat. Chem. Biol. 2016;12:516–522. doi: 10.1038/nchembio.2083. PubMed DOI PMC
Jorgensen J.H., Pfaller M.A., Carroll K.C., Landry M.L., Funke G., Richter S.S., Warnock D.W. Manual of Clinical Microbiology. 11th ed. ASM Press; Washinghton, DC, USA: 2015. pp. 383–402, 667–684.
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 25th ed. CLSI; Wayne, PA, USA: 2015. M100.
Scriver S.R., Walmsley S.L., Kau C.L., Hoban D.J., Brunton J., McGeer A., Moore T.C., Witwicki E., Canadian Haemophilus Study Group. Low D.E. Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their beta-lactamases. Antimicrob. Agents Chemother. 1994;38:1678–1680. doi: 10.1128/AAC.38.7.1678. PubMed DOI PMC
Blenk H., Simm K., Blenk B., Jahneke G. Concentrations of erythromycin and amoxicillin in tonsil and sinus tissues of patients with tonsillitis and sinusitis. A comparison. Infection. 1982;10((Suppl. 2)):S108–S112. doi: 10.1007/BF01640867. PubMed DOI
Averono G., Vidali M., Olina M., Basile M., Bagnati M., Bellomo G., Aluffi P. Evaluation of amoxicillin plasma and tissue levels in pediatric patients undergoing tonsillectomy. Int. J. Pediatr. Otorhinolaryngol. 2010;74:995–998. doi: 10.1016/j.ijporl.2010.05.023. PubMed DOI
Chomarat M., Panteix G., Guillaumond B., Dubreuil C. Tonsillar diffusion kinetics of amoxycillin after oral administration of 1 g to adults. Eur. J. Drug Metab. Pharmacokinet. 1997;22:141–144. doi: 10.1007/BF03189797. PubMed DOI
Bielaszewska M., Daniel O., Karch H., Mellmann A. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J. Antimicrob. Chemother. 2020;75:2442–2451. doi: 10.1093/jac/dkaa214. PubMed DOI
Bielaszewska M., Greune L., Bauwens A., Dersch P., Mellmann A., Rüter C. Virulence factor cargo and host cell interactions of Shiga toxin-producing Escherichia coli outer membrane vesicles. Methods Mol. Biol. 2021;2291:177–205. doi: 10.1007/978-1-0716-1339-9_8. PubMed DOI
Willysson A., Stahl A., Karpman D. Isolation and characterization of Shiga toxin-associated microvesicles. Methods Mol. Biol. 2021;2291:207–228. doi: 10.1007/978-1-0716-1339-9_9. PubMed DOI
Kunsmann L., Rüter C., Bauwens A., Greune L., Glüder M., Kemper B., Fruth A., Wai S.N., He X., Lloubes R., et al. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep. 2015;5:13252. doi: 10.1038/srep13252. PubMed DOI PMC
Brook I., Gober A.E. Increased recovery of Moraxella catarrhalis and Haemophilus influenzae in association with group A β-haemolytic streptococci in healthy children and those with pharyngo-tonsillitis. J. Med. Microbiol. 2006;55:989–992. doi: 10.1099/jmm.0.46325-0. PubMed DOI
Kim S.W., Lee J.S., Park S.B., Lee A.R., Jung J.W., Chun J.H., Lazarte J.M.S., Kim J., Seo J.S., Kim J.H., et al. The importance of porins and beta-lactamase in outer membrane vesicles on the hydrolysis of beta-lactam antibiotics. Int. J. Mol. Sci. 2020;21:2822. doi: 10.3390/ijms21082822. PubMed DOI PMC
Marchant P., Carreño A., Vivanco E., Silva A., Nevermann J., Otero C., Araya E., Gil F., Calderón I.L., Fuentes J.A. “One for All”: Functional transfer of OMV-mediated polymyxin B resistance from Salmonella enterica sv. Typhi ΔtolR and ΔdegS to susceptible bacteria. Front. Microbiol. 2021;12:672467. doi: 10.3389/fmicb.2021.672467. PubMed DOI PMC
Rumbo C., Fernández-Moreira E., Merino M., Poza M., Mendez J.A., Soares N.C., Mosquera A., Chaves F., Bou G. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011;55:3084–3090. doi: 10.1128/AAC.00929-10. PubMed DOI PMC
Chatterjee S., Mondal A., Mitra S., Basu S. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J. Antimicrob. Chemother. 2017;72:2201–2207. doi: 10.1093/jac/dkx131. PubMed DOI
Kosgodage U.S., Matewele P., Mastroianni G., Kraev I., Brotherton D., Awamaria B., Nicolas A.P., Lange S., Inal J.M. Peptidylarginine deiminase inhibitors reduce bacterial membrane vesicle release and sensitize bacteria to antibiotic treatment. Front. Cell. Infect. Microbiol. 2019;9:227. doi: 10.3389/fcimb.2019.00227. PubMed DOI PMC
Sauvage E., Terrak M. Glycosyltransferases and transpeptidases/penicillin-binding proteins: Valuable targets for new antibacterials. Antibiotics. 2016;5:12. doi: 10.3390/antibiotics5010012. PubMed DOI PMC