In Vivo Secretion of β-Lactamase-Carrying Outer Membrane Vesicles as a Mechanism of β-Lactam Therapy Failure

. 2021 Oct 23 ; 11 (11) : . [epub] 20211023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34832035

Grantová podpora
194468054 - SFB 1009, B04 Deutsche Forschungsgemeinschaft (DFG)
NIPH 75010330 Ministry of Health

Outer membrane vesicles carrying β-lactamase (βLOMVs) protect bacteria against β-lactam antibiotics under experimental conditions, but their protective role during a patient's treatment leading to the therapy failure is unknown. We investigated the role of βLOMVs in amoxicillin therapy failure in a patient with group A Streptococcus pyogenes (GAS) pharyngotonsillitis. The patient's throat culture was examined by standard microbiological procedures. Bacterial vesicles were analyzed for β-lactamase by immunoblot and the nitrocefin assay, and in vivo secretion of βLOMVs was detected by electron microscopy. These analyses demonstrated that the patient's throat culture grew, besides amoxicillin-susceptible GAS, an amoxicillin-resistant nontypeable Haemophilus influenzae (NTHi), which secreted βLOMVs. Secretion and β-lactamase activity of NTHi βLOMVs were induced by amoxicillin concentrations reached in the tonsils during therapy. The presence of NTHi βLOMVs significantly increased the minimal inhibitory concentration of amoxicillin for GAS and thereby protected GAS against bactericidal concentrations of amoxicillin. NTHi βLOMVs were identified in the patient's pharyngotonsillar swabs and saliva, demonstrating their secretion in vivo at the site of infection. We conclude that the pathogen protection via βLOMVs secreted by the flora colonizing the infection site represents a yet underestimated mechanism of β-lactam therapy failure that warrants attention in clinical studies.

Zobrazit více v PubMed

Shulman S.T., Bisno A.L., Clegg H.W., Gerber M.A., Kaplan E.L., Lee G., Martin J.M., Van Beneden C. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2012;55:e86–e102. doi: 10.1093/cid/cis629. PubMed DOI PMC

Brook I. Overcoming penicillin failures in the treatment of Group A streptococcal pharyngo-tonsillitis. Int. J. Pediatr. Otorhinolaryngol. 2007;71:1501–1508. doi: 10.1016/j.ijporl.2007.06.006. PubMed DOI

Ellis T.N., Kuehn M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010;74:81–94. doi: 10.1128/MMBR.00031-09. PubMed DOI PMC

Toyofuku M., Nomura N., Eberl L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019;17:13–24. doi: 10.1038/s41579-018-0112-2. PubMed DOI

Guerrero-Mandujano A., Hernández-Cortez C., Ibarra J.A., Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic. 2017;18:425–432. doi: 10.1111/tra.12488. PubMed DOI

Schwechheimer C., Kuehn M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. PubMed DOI PMC

Roier S., Zingl F.G., Cakar F., Durakovic S., Kohl P., Eichmann T.O., Klug L., Gadermaier B., Weinzerl K., Prassl R., et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 2016;7:10515. doi: 10.1038/ncomms10515. PubMed DOI PMC

MacDonald I.A., Kuehn M.J. Offense and defense: Microbial membrane vesicles play both ways. Res. Microbiol. 2012;163:607–618. doi: 10.1016/j.resmic.2012.10.020. PubMed DOI PMC

Caruana J.C., Walper S.A. Bacterial membrane vesicles as mediators of microbe—Microbe and microbe—Host community interactions. Front. Microbiol. 2020;11:432. doi: 10.3389/fmicb.2020.00432. PubMed DOI PMC

Rueter C., Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles. Front. Cell. Infect. Microbiol. 2020;10:91. doi: 10.3389/fcimb.2020.00091. PubMed DOI PMC

Tan T.T., Morgelin M., Forsgren A., Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J. Infect. Dis. 2007;195:1661–1670. doi: 10.1086/517611. PubMed DOI

Namork E., Brandtzaeg P. Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet. 2002;360:1741. doi: 10.1016/S0140-6736(02)11721-1. PubMed DOI

McBroom A.J., Kuehn M.J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 2007;63:545–558. doi: 10.1111/j.1365-2958.2006.05522.x. PubMed DOI PMC

Orench-Rivera N., Kuehn M.J. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 2016;18:1525–1536. doi: 10.1111/cmi.12676. PubMed DOI PMC

Bauwens A., Kunsmann L., Marejková M., Zhang W., Karch H., Bielaszewska M., Mellmann A. Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4. Environ. Microbiol. Rep. 2017;9:626–634. doi: 10.1111/1758-2229.12562. PubMed DOI

Bauwens A., Kunsmann L., Karch H., Mellmann A., Bielaszewska M. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrob. Agents Chemother. 2017;61:e00937-17. doi: 10.1128/AAC.00937-17. PubMed DOI PMC

Devos S., Van Oudenhove L., Stremersch S., Van Putte W., De Rycke R., Van Driessche G., Vitse J., Raemdonck K., Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front. Microbiol. 2015;6:298. doi: 10.3389/fmicb.2015.00298. PubMed DOI PMC

Devos S., Stremersch S., Raemdonck K., Braeckmans K., Devreese B. Intra- and interspecies effects of outer membrane vesicles from Stenotrophomonas maltophilia on β-lactam resistance. Antimicrob. Agents Chemother. 2016;60:2516–2518. doi: 10.1128/AAC.02171-15. PubMed DOI PMC

Maredia R., Devineni N., Lentz P., Dallo S.F., Yu J., Guentzel N., Chambers J., Arulanandam B., Haskins W.E., Weitao T. Vesiculation from Pseudomonas aeruginosa under SOS. Sci. World J. 2012;2012:402919. doi: 10.1100/2012/402919. PubMed DOI PMC

Kulkarni H.M., Nagaraj R., Jagannadham M.V. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol. Res. 2015;181:1–7. doi: 10.1016/j.micres.2015.07.008. PubMed DOI

Manning A.J., Kuehn M.J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011;11:258. doi: 10.1186/1471-2180-11-258. PubMed DOI PMC

Schaar V., Nordström T., Mörgelin M., Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 2011;55:3845–3853. doi: 10.1128/AAC.01772-10. PubMed DOI PMC

Schaar V., Uddbäck I., Nordström T., Riesbeck K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. J. Antimicrob. Chemother. 2013;69:117–120. doi: 10.1093/jac/dkt307. PubMed DOI

Kim S.W., Park S.B., Im S.P., Lee J.S., Jung J.W., Gong T.W., Lazarte J.M.S., Kim J., Seo J.S., Kim J.H., et al. Outer membrane vesicles from beta-lactam-resistant Escherichia coli enable the survival of beta-lactam-susceptible E. coli in the presence of beta-lactam antibiotics. Sci. Rep. 2018;8:5402. doi: 10.1038/s41598-018-23656-0. PubMed DOI PMC

Stentz R., Horn N., Cross K., Salt L., Brearley C., Livermore D.M., Carding S.R. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics. J. Antimicrob. Chemother. 2015;70:701–709. doi: 10.1093/jac/dku466. PubMed DOI PMC

González L.J., Bahr G., Nakashige T.G., Nolan E.M., Bonomo R.A., Vila A.J. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat. Chem. Biol. 2016;12:516–522. doi: 10.1038/nchembio.2083. PubMed DOI PMC

Jorgensen J.H., Pfaller M.A., Carroll K.C., Landry M.L., Funke G., Richter S.S., Warnock D.W. Manual of Clinical Microbiology. 11th ed. ASM Press; Washinghton, DC, USA: 2015. pp. 383–402, 667–684.

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 25th ed. CLSI; Wayne, PA, USA: 2015. M100.

Scriver S.R., Walmsley S.L., Kau C.L., Hoban D.J., Brunton J., McGeer A., Moore T.C., Witwicki E., Canadian Haemophilus Study Group. Low D.E. Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their beta-lactamases. Antimicrob. Agents Chemother. 1994;38:1678–1680. doi: 10.1128/AAC.38.7.1678. PubMed DOI PMC

Blenk H., Simm K., Blenk B., Jahneke G. Concentrations of erythromycin and amoxicillin in tonsil and sinus tissues of patients with tonsillitis and sinusitis. A comparison. Infection. 1982;10((Suppl. 2)):S108–S112. doi: 10.1007/BF01640867. PubMed DOI

Averono G., Vidali M., Olina M., Basile M., Bagnati M., Bellomo G., Aluffi P. Evaluation of amoxicillin plasma and tissue levels in pediatric patients undergoing tonsillectomy. Int. J. Pediatr. Otorhinolaryngol. 2010;74:995–998. doi: 10.1016/j.ijporl.2010.05.023. PubMed DOI

Chomarat M., Panteix G., Guillaumond B., Dubreuil C. Tonsillar diffusion kinetics of amoxycillin after oral administration of 1 g to adults. Eur. J. Drug Metab. Pharmacokinet. 1997;22:141–144. doi: 10.1007/BF03189797. PubMed DOI

Bielaszewska M., Daniel O., Karch H., Mellmann A. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J. Antimicrob. Chemother. 2020;75:2442–2451. doi: 10.1093/jac/dkaa214. PubMed DOI

Bielaszewska M., Greune L., Bauwens A., Dersch P., Mellmann A., Rüter C. Virulence factor cargo and host cell interactions of Shiga toxin-producing Escherichia coli outer membrane vesicles. Methods Mol. Biol. 2021;2291:177–205. doi: 10.1007/978-1-0716-1339-9_8. PubMed DOI

Willysson A., Stahl A., Karpman D. Isolation and characterization of Shiga toxin-associated microvesicles. Methods Mol. Biol. 2021;2291:207–228. doi: 10.1007/978-1-0716-1339-9_9. PubMed DOI

Kunsmann L., Rüter C., Bauwens A., Greune L., Glüder M., Kemper B., Fruth A., Wai S.N., He X., Lloubes R., et al. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep. 2015;5:13252. doi: 10.1038/srep13252. PubMed DOI PMC

Brook I., Gober A.E. Increased recovery of Moraxella catarrhalis and Haemophilus influenzae in association with group A β-haemolytic streptococci in healthy children and those with pharyngo-tonsillitis. J. Med. Microbiol. 2006;55:989–992. doi: 10.1099/jmm.0.46325-0. PubMed DOI

Kim S.W., Lee J.S., Park S.B., Lee A.R., Jung J.W., Chun J.H., Lazarte J.M.S., Kim J., Seo J.S., Kim J.H., et al. The importance of porins and beta-lactamase in outer membrane vesicles on the hydrolysis of beta-lactam antibiotics. Int. J. Mol. Sci. 2020;21:2822. doi: 10.3390/ijms21082822. PubMed DOI PMC

Marchant P., Carreño A., Vivanco E., Silva A., Nevermann J., Otero C., Araya E., Gil F., Calderón I.L., Fuentes J.A. “One for All”: Functional transfer of OMV-mediated polymyxin B resistance from Salmonella enterica sv. Typhi ΔtolR and ΔdegS to susceptible bacteria. Front. Microbiol. 2021;12:672467. doi: 10.3389/fmicb.2021.672467. PubMed DOI PMC

Rumbo C., Fernández-Moreira E., Merino M., Poza M., Mendez J.A., Soares N.C., Mosquera A., Chaves F., Bou G. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011;55:3084–3090. doi: 10.1128/AAC.00929-10. PubMed DOI PMC

Chatterjee S., Mondal A., Mitra S., Basu S. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J. Antimicrob. Chemother. 2017;72:2201–2207. doi: 10.1093/jac/dkx131. PubMed DOI

Kosgodage U.S., Matewele P., Mastroianni G., Kraev I., Brotherton D., Awamaria B., Nicolas A.P., Lange S., Inal J.M. Peptidylarginine deiminase inhibitors reduce bacterial membrane vesicle release and sensitize bacteria to antibiotic treatment. Front. Cell. Infect. Microbiol. 2019;9:227. doi: 10.3389/fcimb.2019.00227. PubMed DOI PMC

Sauvage E., Terrak M. Glycosyltransferases and transpeptidases/penicillin-binding proteins: Valuable targets for new antibacterials. Antibiotics. 2016;5:12. doi: 10.3390/antibiotics5010012. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...