Secretion and Delivery of Intestinal Pathogenic Escherichia coli Virulence Factors via Outer Membrane Vesicles
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R56 AR072594
NIAMS NIH HHS - United States
PubMed
32211344
PubMed Central
PMC7068151
DOI
10.3389/fcimb.2020.00091
Knihovny.cz E-zdroje
- Klíčová slova
- EHEC, ETEC, intestinal pathogenic Escherichia coli, outer membrane vesicles, toxins, virulence factors,
- MeSH
- bakteriální sekreční systémy metabolismus MeSH
- bakteriální toxiny metabolismus MeSH
- enterohemoragická Escherichia coli metabolismus patogenita MeSH
- enterotoxigenní Escherichia coli metabolismus patogenita MeSH
- enterotoxiny metabolismus MeSH
- faktory virulence metabolismus MeSH
- fyziologický stres MeSH
- infekce vyvolané Escherichia coli mikrobiologie MeSH
- lidé MeSH
- proteolipidy metabolismus ultrastruktura MeSH
- střeva mikrobiologie MeSH
- transport proteinů MeSH
- virulence MeSH
- vnější bakteriální membrána metabolismus ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální sekreční systémy MeSH
- bakteriální toxiny MeSH
- enterotoxiny MeSH
- faktory virulence MeSH
- proteolipidy MeSH
- proteoliposomes MeSH Prohlížeč
Outer membrane vesicles (OMVs) are nanoscale proteoliposomes secreted from the cell envelope of all Gram-negative bacteria. Originally considered as an artifact of the cell wall, OMVs are now recognized as a general secretion system, which serves to improve the fitness of bacteria and facilitate bacterial interactions in polymicrobial communities as well as interactions between the microbe and the host. In general, OMVs are released in increased amounts from pathogenic bacteria and have been found to harbor much of the contents of the parental bacterium. They mainly encompass components of the outer membrane and the periplasm including various virulence factors such as toxins, adhesins, and immunomodulatory molecules. Numerous studies have clearly shown that the delivery of toxins and other virulence factors via OMVs essentially influences their interactions with host cells. Here, we review the OMV-mediated intracellular deployment of toxins and other virulence factors with a special focus on intestinal pathogenic Escherichia coli. Especially, OMVs ubiquitously produced and secreted by enterohemorrhagic E. coli (EHEC) appear as a highly advanced mechanism for secretion and simultaneous, coordinated and direct delivery of bacterial virulence factors into host cells. OMV-associated virulence factors are not only stabilized by the association with OMVs, but can also often target previously unknown target structures and perform novel activities. The toxins are released by OMVs in their active forms and are transported via cell sorting processes to their specific cell compartments, where they can develop their detrimental effects. OMVs can be considered as bacterial "long distance weapons" that attack host tissues and help bacterial pathogens to establish the colonization of their biological niche(s), impair host cell function, and modulate the defense of the host. Thus, OMVs contribute significantly to the virulence of the pathogenic bacteria.
Institute for Hygiene University Hospital of Muenster University of Muenster Münster Germany
National Institute of Public Health Reference Laboratory for E coli and Shigellae Prague Czechia
Zobrazit více v PubMed
Aldick T., Bielaszewska M., Uhlin B. E., Humpf H. U., Wai S. N., Karch H. (2009). Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol. Microbiol. 71, 1496–1508. 10.1111/j.1365-2958.2009.06618.x PubMed DOI
Amano A., Takeuchi H., Furuta N. (2010). Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect. 12, 791–798. 10.1016/j.micinf.2010.05.008 PubMed DOI
Balsalobre C., Silván J. M., Berglund S., Mizunoe Y., Uhlin B. E., Wai S. N. (2006). Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol. Microbiol. 59, 99–112. 10.1111/j.1365-2958.2005.04938.x PubMed DOI
Bauwens A., Kunsmann L., Karch H., Mellmann A., Bielaszewska M. (2017a). Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrob. Agents Chemother. 61:e00937–17. 10.1128/AAC.00937-17 PubMed DOI PMC
Bauwens A., Kunsmann L., Marejkova M., Zhang W., Karch H., Bielaszewska M., et al. . (2017b). Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4. Environ. Microbiol. Rep. 9, 626–634. 10.1111/1758-2229.12562 PubMed DOI
Bielaszewska M., Marejkova M., Bauwens A., Kunsmann-Prokscha L., Mellmann A., Karch H. (2018). Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-kappa B. Inter. J. Med. Microbiol. 308, 882–889. 10.1016/j.ijmm.2018.06.004 PubMed DOI
Bielaszewska M., Rüter C., Bauwens A., Greune L., Jarosch K. A., Steil D., et al. . (2017). Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury. PLoS Pathog. 13:e1006159. 10.1371/journal.ppat.1006159 PubMed DOI PMC
Bielaszewska M., Rüter C., Kunsmann L., Greune L., Bauwens A., Zhang W., et al. . (2013). Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS Pathog. 9:e1003797. 10.1371/journal.ppat.1003797 PubMed DOI PMC
Bomberger J. M., MacEachran D. P., Coutermarsh B. A., Ye S. Y., O'Toole G. A., Stanton B. A. (2009). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5:e1000382. 10.1371/journal.ppat.1000382 PubMed DOI PMC
Bonnington K. E., Kuehn M. J. (2014). Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta Mol. Cell Res. 1843, 1612–1619. 10.1016/j.bbamcr.2013.12.011 PubMed DOI PMC
Chatterjee D., Chaudhuri K. (2011). Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett. 585, 1357–1362. 10.1016/j.febslet.2011.04.017 PubMed DOI
Chatterjee S., Mondal A., Mitra S., Basu S. (2017). Acinetobacter baumannii transfers the blaNDM−1 gene via outer membrane vesicles. J. Antimicrob. Chemother. 72, 2201–2207. 10.1093/jac/dkx131 PubMed DOI
Chattopadhyay M. K., Jagannadham M. V. (2015). Vesicles-mediated resistance to antibiotics in bacteria. Front. Microbiol. 6:974 10.3389/fmicb.2015.00974 PubMed DOI PMC
Ciofu O., Beveridge T. J., Kadurugamuwa J., Walther-Rasmussen J., Høiby N. (2000). Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13. 10.1093/jac/45.1.9 PubMed DOI
Devos S., Stremersch S., Raemdonck K., Braeckmans K., Devreese B. (2016). Intra- and interspecies effects of outer membrane vesicles from Stenotrophomonas maltophilia on beta-lactam resistance. Antimicrob. Agents Chemother. 60, 2516–2518. 10.1128/AAC.02171-15 PubMed DOI PMC
Devos S., Van Putte W., Vitse J., Van Driessche G., Stremersch S., Van Den Broek W., et al. . (2017). Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress. Environ. Microbiol. 19, 3930–3937. 10.1111/1462-2920.13793 PubMed DOI
Domingues S., Nielsen K. M. (2017). Membrane vesicles and horizontal gene transfer in prokaryotes. Curr. Opin. Microbiol. 38, 16–21. 10.1016/j.mib.2017.03.012 PubMed DOI
Duperthuy M., Sjöström A. E., Sabharwal D., Damghani F., Uhlin B. E., Wai S. N. (2013). Role of the vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog. 9:e1003620. 10.1371/journal.ppat.1003620 PubMed DOI PMC
Elhenawy W., Bording-Jorgensen M., Valguarnera E., Haurat M. F., Wine E., Feldman M. F. (2016). LPS remodeling triggers formation of outer membrane vesicles in Salmonella. mBio 7:e00940–16. 10.1128/mBio.00940-16 PubMed DOI PMC
Ellis T. N., Kuehn M. J. (2010). Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94. 10.1128/MMBR.00031-09 PubMed DOI PMC
Elluri S., Enow C., Vdovikova S., Rompikuntal P. K., Dongre M., Carlsson S., et al. . (2014). Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS ONE 9:e106731. 10.1371/journal.pone.0106731 PubMed DOI PMC
Fabrega M. J., Rodriguez-Nogales A., Garrido-Mesa J., Algieri F., Badia J., Gimenez R., et al. . (2017). Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front. Microbiol. 8:1274. 10.3389/fmicb.2017.01274 PubMed DOI PMC
Fingermann M., Avila L., De Marco M. B., Vazquez L., Di Biase D. N., Muller A. V., et al. . (2018). OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Hum. Vaccin. Immunother. 14, 2208–2213. 10.1080/21645515.2018.1490381 PubMed DOI PMC
Fiocca R., Necchi V., Sommi P., Ricci V., Telford J., Cover T. L., et al. . (1999). Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188, 220–226. 10.1002/(SICI)1096-9896(199906)188:2<220::AID-PATH307>3.0.CO;2-C PubMed DOI
Fleckenstein J. M., Kuhlmann F. M. (2019). Enterotoxigenic Escherichia coli Infections. Curr. Infect. Dis. Rep. 21:9. 10.1007/s11908-019-0665-x PubMed DOI PMC
Fulsundar S., Harms K., Flaten G. E., Johnsen P. J., Chopade B. A., Nielsen K. M. (2014). Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80, 3469–3483. 10.1128/AEM.04248-13 PubMed DOI PMC
González L. J., Bahr G., Nakashige T. G., Nolan E. M., Bonomo R. A., Vila A. J. (2016). Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol. 12, 516–522. 10.1038/nchembio.2083 PubMed DOI PMC
Guerrero-Mandujano A., Hernandez-Cortez C., Ibarra J. A., Castro-Escarpulli G. (2017). The outer membrane vesicles: secretion system type zero. Traffic 18, 425–432. 10.1111/tra.12488 PubMed DOI
Guidi R., Levi L., Rouf S. F., Puiac S., Rhen M., Frisan T. (2013). Salmonella enterica delivers its genotoxin through outer membrane vesicles secreted from infected cells. Cell. Microbiol. 15, 2034–2050. 10.1111/cmi.12172 PubMed DOI
Haurat M. F., Elhenawy W., Feldman M. F. (2015). Prokaryotic membrane vesicles: new insights on biogenesis and biological roles. Biol. Chem. 396, 95–109. 10.1515/hsz-2014-0183 PubMed DOI
Hays M. P., Houben D., Yang Y., Luirink J., Hardwidge P. R. (2018). Immunization with Skp delivered on outer membrane vesicles protects mice against enterotoxigenic Escherichia coli challenge. Front. Cell. Infect. Microbiol. 8:132. 10.3389/fcimb.2018.00132 PubMed DOI PMC
Hellman J., Loiselle P. M., Zanzot E. M., Allaire J. E., Tehan M. M., Boyle L. A., et al. . (2000). Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J. Infect. Dis. 181, 1034–1043. 10.1086/315302 PubMed DOI
Horstman A. L., Kuehn M. J. (2000). Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 275, 12489–12496. 10.1074/jbc.275.17.12489 PubMed DOI PMC
Horstman A. L., Kuehn M. J. (2002). Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J. Biol. Chem. 277, 32538–32545. 10.1074/jbc.M203740200 PubMed DOI PMC
Jan A. T. (2017). Outer Membrane Vesicles (OMVs) of gram-negative bacteria. a perspective update. Front. Microbiol. 8:1053. 10.3389/fmicb.2017.01053 PubMed DOI PMC
Kadurugamuwa J. L., Beveridge T. J. (1995). Virulence factors are released from Pseudomonas-aeruginosa in association with membrane-vesicles during normal growth and exposure to gentamicin - A novel mechanism of enzyme-secretion. J. Bacteriol. 177, 3998–4008. 10.1128/JB.177.14.3998-4008.1995 PubMed DOI PMC
Kadurugamuwa J. L., Beveridge T. J. (1997). Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40, 615–621. 10.1093/jac/40.5.615 PubMed DOI
Kaparakis M., Turnbull L., Carneiro L., Firth S., Coleman H. A., Parkington H. C., et al. . (2010). Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385. 10.1111/j.1462-5822.2009.01404.x PubMed DOI
Karch H., Tarr P. I., Bielaszewska M. (2005). Enterohaemorrhagic Escherichia coli in human medicine. Inter. J. Med. Microbiol. 295, 405–418. 10.1016/j.ijmm.2005.06.009 PubMed DOI
Karpman D., Loos S., Tati R., Arvidsson I. (2017). Haemolytic uraemic syndrome. J. Inter. Med. 281, 123–148. 10.1111/joim.12546 PubMed DOI
Kato S., Kowashi Y., Demuth D. R. (2002). Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32, 1–13. 10.1006/mpat.2001.0474 PubMed DOI
Keenan J. I., Allardyce R. A. (2000). Iron influences the expression of Helicobacter pylori outer membrane vesicle-associated virulence factors. Eur. J. Gastroenterol. Hepatol. 12, 1267–1273. 10.1097/00042737-200012120-00002 PubMed DOI
Kesty N. C., Kuehn M. J. (2004). Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J. Biol. Chem. 279, 2069–2076. 10.1074/jbc.M307628200 PubMed DOI PMC
Kesty N. C., Mason K. M., Reedy M., Miller S. E., Kuehn M. J. (2004). Enterotoxigenic escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23, 4538–4549. 10.1038/sj.emboj.7600471 PubMed DOI PMC
Kim S. H., Lee Y. H., Lee S. H., Lee S. R., Huh J. W., Kim S. U., et al. . (2011). Mouse model for hemolytic uremic syndrome induced by outer membrane vesicles of Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 63, 427–434. 10.1111/j.1574-695X.2011.00869.x PubMed DOI
Kim S. W., Park S. B., Im S. P., Lee J. S., Jung J. W., Gong T. W., et al. . (2018). Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci. Rep. 8:5402. 10.1038/s41598-018-23656-0 PubMed DOI PMC
Kolling G. L., Matthews K. R. (1999). Export of virulence genes and shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65, 1843–1848. 10.1128/AEM.65.5.1843-1848.1999 PubMed DOI PMC
Kouokam J. C., Wai S. N., Fallman M., Dobrindt U., Hacker J., Uhlin B. E. (2006). Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect. Immunity 74, 2022–2030. 10.1128/IAI.74.4.2022-2030.2006 PubMed DOI PMC
Kulp A., Kuehn M. J. (2010). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184. 10.1146/annurev.micro.091208.073413 PubMed DOI PMC
Kunsmann L., Rüter C., Bauwens A., Greune L., Gluder M., Kemper B., et al. . (2015). Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep. 5:13252. 10.1038/srep13252 PubMed DOI PMC
Leitner D. R., Lichtenegger S., Temel P., Zingl F. G., Ratzberger D., Roier S., et al. . (2015). A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front. Microbiol. 6:823. 10.3389/fmicb.2015.00823 PubMed DOI PMC
Lindmark B., Rompikuntal P. K., Vaitkevicius K., Song T. Y., Mizunoe Y., Uhlin B. E., et al. . (2009). Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol. 9:220. 10.1186/1471-2180-9-220 PubMed DOI PMC
Liu Q., Yi J., Liang K., Zhang X. M. (2017). Salmonella Choleraesuis outer membrane vesicles: proteomics and immunogenicity. J. Basic Microbiol. 57, 852–861. 10.1002/jobm.201700153 PubMed DOI
MacDonald I. A., Kuehn M. J. (2012). Offense and defense: microbial membrane vesicles play both ways. Res. Microbiol. 163, 607–618. 10.1016/j.resmic.2012.10.020 PubMed DOI PMC
Manning A. J., Kuehn M. J. (2011). Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11:258. 10.1186/1471-2180-11-258 PubMed DOI PMC
Maredia R., Devineni N., Lentz P., Dallo S. F., Yu J. J., Guentzel N., et al. . (2012). Vesiculation from Pseudomonas aeruginosa under SOS. Sci. World J. 2012:402919. 10.1100/2012/402919 PubMed DOI PMC
Marsay L., Dold C., Green C. A., Rollier C. S., Norheim G., Sadarangani M., et al. . (2015). A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: a phase I clinical trial. J. Infect. 71, 326–337. 10.1016/j.jinf.2015.05.006 PubMed DOI PMC
Mirhoseini A., Amani J., Nazarian S. (2018). Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb. Pathog. 117, 162–169. 10.1016/j.micpath.2018.02.032 PubMed DOI
Namork E., Brandtzaeg P. (2002). Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360, 1741–1741. 10.1016/S0140-6736(02)11721-1 PubMed DOI
O'Donoghue E. J., Krachler A. M. (2016). Mechanisms of outer membrane vesicle entry into host cells. Cell. Microbiol. 18, 1508–1517. 10.1111/cmi.12655 PubMed DOI PMC
Orench-Rivera N., Kuehn M. J. (2016). Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 18, 1525–1536. 10.1111/cmi.12676 PubMed DOI PMC
Park K. S., Choi K. H., Kim Y. S., Hong B. S., Kim O. Y., Kim J. H., et al. . (2010). Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. PLoS ONE 5:e11334. 10.1371/journal.pone.0011334 PubMed DOI PMC
Pérez-Cruz C., Carrión O., Delgado L., Martinez G., López-Iglesias C., Mercade E. (2013). New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl. Environ. Microbiol. 79, 1874–1881. 10.1128/AEM.03657-12 PubMed DOI PMC
Pérez-Cruz C., Delgado L., López-Iglesias C., Mercade E. (2015). Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS ONE 10:e0116896. 10.1371/journal.pone.0116896 PubMed DOI PMC
Petousis-Harris H., Paynter J., Morgan J., Saxton P., McArdle B., Goodyear-Smith F., et al. . (2017). Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610. 10.1016/S0140-6736(17)31449-6 PubMed DOI
Rewatkar P. V., Parton R. G., Parekh H. S., Parat M. O. (2015). Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv. Drug Deliv. Rev. 91, 92–108. 10.1016/j.addr.2015.01.003 PubMed DOI
Reyes-Robles T., Dillard R. S., Cairns L. S., Silva-Valenzuela C. A., Housman M., Ali A., et al. . (2018). Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 200:e00792–17. 10.1128/JB.00792-17 PubMed DOI PMC
Roier S., Zingl F. G., Cakar F., Schild S. (2016). Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications. Microb. Cell. 3, 257–259. 10.15698/mic2016.06.508 PubMed DOI PMC
Rolhion N., Barnich N., Bringer M. A., Glasser A. L., Ranc J., Hébuterne X., et al. . (2010). Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive escherichia coli invasion. Gut 59, 1355–1362. 10.1136/gut.2010.207456 PubMed DOI PMC
Rompikuntal P. K., Thay B., Khan M. K., Alanko J., Penttinen A. M., Asikainen S., et al. . (2012). Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect. Immunity 80, 31–42. 10.1128/IAI.06069-11 PubMed DOI PMC
Rompikuntal P. K., Vdovikova S., Duperthuy M., Johnson T. L., Ahlund M., Lundmark R., et al. . (2015). Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS ONE 10:e0134098. 10.1371/journal.pone.0134098 PubMed DOI PMC
Roy K., Bartels S., Qadri F., Fleckenstein J. M. (2010). Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infect. Immunity 78, 3027–3035. 10.1128/IAI.00264-10 PubMed DOI PMC
Roy K., Hamilton D. J., Munson G. P., Fleckenstein J. M. (2011). Outer membrane vesicles induce immune responses to virulence proteins and protect against colonization by enterotoxigenic Escherichia coli. Clin. Vaccine Immunol. 18, 1803–1808. 10.1128/CVI.05217-11 PubMed DOI PMC
Rumbo C., Fernández-Moreira E., Merino M., Poza M., Mendez J. A., Soares N. C., et al. . (2011). Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3084–3090. 10.1128/AAC.00929-10 PubMed DOI PMC
Rüter C., Lubos M. L., Norkowski S., Schmidt M. A. (2018). All in-Multiple parallel strategies for intracellular delivery by bacterial pathogens. Inter. J. Med. Microbiol. 308, 872–881. 10.1016/j.ijmm.2018.06.007 PubMed DOI
Schaar V., de Vries S. P. W., Vidakovics M., Bootsma H. J., Larsson L., Hermans P. W. M., et al. . (2011). Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells. Cell. Microbiol. 13, 432–449. 10.1111/j.1462-5822.2010.01546.x PubMed DOI
Schaar V., Uddback I., Nordstrom T., Riesbeck K. (2014). Group a streptococci are protected from amoxicillin-mediated killing by vesicles containing beta-lactamase derived from Haemophilus influenzae. J. Antimicrob. Chemother. 69, 117–120. 10.1093/jac/dkt307 PubMed DOI
Schwechheimer C., Kuehn M. J. (2015). Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619. 10.1038/nrmicro3525 PubMed DOI PMC
Shah B., Sullivan C. J., Lonergan N. E., Stanley S., Soult M. C., Britt L. D. (2012). Circulating bacterial membrane cesicles cause sepsis in rats. Shock 37, 621–628. 10.1097/SHK.0b013e318250de5d PubMed DOI
Stentz R., Horn N., Cross K., Salt L., Brearley C., Livermore D. M., et al. . (2015). Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics. J. Antimicrob. Chemother. 70, 701–709. 10.1093/jac/dku466 PubMed DOI PMC
Stephens D. S., Edwards K. M., Morris F., McGee Z. A. (1982). Pili and outer-membrane appendages on Neisseria meningitidis in the cerebrosinal-fluid of an infant. J. Infect. Dis. 146, 568–568. 10.1093/infdis/146.4.568 PubMed DOI
Svennerholm K., Park K. S., Wikstrom J., Lasser C., Crescitelli R., Shelke G. V., et al. . (2017). Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci. Rep. 7:17434. 10.1038/s41598-017-16363-9 PubMed DOI PMC
Tan T. T., Morgelin M., Forsgren A., Riesbeck K. (2007). Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. Inter. J. Antimicrob. Agents 29, S206–S206. 10.1016/S0924-8579(07)70656-8 PubMed DOI
Tarr P. I., Gordon C. A., Chandler W. L. (2005). Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086. 10.1016/S0140-6736(05)74232-X PubMed DOI
Thay B., Damm A., Kufer T. A., Wai S. N., Oscarsson J. (2014). Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-kappa B activation. Infect. Immunity 82, 4034–4046. 10.1128/IAI.01980-14 PubMed DOI PMC
Toyofuku M., Nomura N., Eberl L. (2019). Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24. 10.1038/s41579-018-0112-2 PubMed DOI
Turnbull L., Toyofuku M., Hynen A. L., Kurosawa M., Pessi G., Petty N. K., et al. . (2016). Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7:11220. 10.1038/ncomms11220 PubMed DOI PMC
Urashima A., Sanou A., Yen H., Tobe T. (2017). Enterohaemorrhagic escherichia coli produces outer membrane vesicles as an active defence system against antimicrobial peptide LL-37. Cell. Microbiol. 19:e12758. 10.1111/cmi.12758 PubMed DOI
Vanaja S. K., Russo A. J., Behl B., Banerjee I., Yankova M., Deshmukh S. D., et al. . (2016). Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119. 10.1016/j.cell.2016.04.015 PubMed DOI PMC
Wai S. N., Lindmark B., Soderblom T., Takade A., Westermark M., Oscarsson J., et al. . (2003). Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25–35. 10.1016/S0092-8674(03)00754-2 PubMed DOI
Wai S. N., Takade A., Amako K. (1995). The release of outer-membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol. Immunol. 39, 451–456. 10.1111/j.1348-0421.1995.tb02228.x PubMed DOI
Wang E. H., Liu Y. K., Qiu X. H., Tang Y. T., Wang H. D., Xiao X. Z., et al. . (2019). Bacteria-released outer membrane vesicles promote disseminated intravascular coagulation. Thromb. Res. 178, 26–33. 10.1016/j.thromres.2019.03.019 PubMed DOI
Yokoyama K., Horii T., Yamashino T., Hashikawa S., Barua S., Hasegawa T., et al. . (2000). Production of shiga toxin by Escherichia coli measured with reference to the membrane vesicle-associated toxins. FEMS Microbiol. Lett. 192, 139–144. 10.1111/j.1574-6968.2000.tb09372.x PubMed DOI
Zoja C., Buelli S., Morigi M. (2010). Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr. Nephrol. 25, 2231–2240. 10.1007/s00467-010-1522-1 PubMed DOI