Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LIDER/6/0016/L-11/19/NCBR/2020
National Centre for Research and Development
PubMed
34832324
PubMed Central
PMC8625606
DOI
10.3390/ma14226925
PII: ma14226925
Knihovny.cz E-zdroje
- Klíčová slova
- chitosan, double-layered films, furcellaran, gelatin hydrolysate, silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
A novel, eco-friendly, and biocompatible method was applied to form silver nanoparticles (AgNPs) in great water dock (Lapathi radix) (KB) and pu-erh (Camellia sinensis) (PE) extracts. The surface plasma resonance peak of green synthesized AgNPs at 451.8 nm for AgNPs+KB and 440.8 nm for AgNPs+PE was observed via spectral analysis of UV absorbance. In this study, double-layered biopolymer films (FUR/CHIT+HGEL) with AgNPs incorporated in KB solution (AgNPs+KB) and AgNPs in PE solution (AgNPs+PE), were successfully prepared using the casting method. The SEM, XRD, zeta potential and size analyses confirmed the presence of AgNP in the films. The addition of AgNPs in plant extracts improved antimicrobial and antioxidant activity and thermal stability, whereas WVTR experienced a decrease. The nanocomposite films' orange-brown colour may aid in the protection of food products against UV rays. The composite films demonstrated antibacterial activity against food-borne pathogens and may offer potential in food packaging applications.
Department of Chemistry University of Agriculture ul Balicka 122 30 149 Kraków Poland
Department of Product Packaging Cracow University of Economics ul Rakowicka 27 30 510 Kraków Poland
Zobrazit více v PubMed
de Carvalho Bernardo W.L., Boriollo M.F.G., Tonon C.C., da Silva J.J., Cruz F.M., Martins A.L., Höfling J.F., Spolidorio D.M.P. Antimicrobial effects of silver nanoparticles and extracts of Syzygium cumini flowers and seeds: Periodontal, cariogenic and opportunistic pathogens. Arch. Oral Biol. 2021;125:105101. doi: 10.1016/j.archoralbio.2021.105101. PubMed DOI
Wang L., Periyasami G., Aldalbahi A., Fogliano V. The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem. 2021;359:129859. doi: 10.1016/j.foodchem.2021.129859. PubMed DOI
Shah Z., Gul T., Ali Khan S., Shaheen K., Anwar Y., Suo H., Ismail M., Alghamdi K.M., Salman S.M. Synthesis of high surface area AgNPs from Dodonaea viscosa plant for the removal of pathogenic microbes and persistent organic pollutants. Mater. Sci. Eng. B. 2021;263:114770. doi: 10.1016/j.mseb.2020.114770. DOI
Rosman N.S.R., Harun N.A., Idris I., Ismail W.I.W. Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: Biosynthesis, characterisation, and antibacterial applications. Heliyon. 2020;6:e05462. doi: 10.1016/j.heliyon.2020.e05462. PubMed DOI PMC
Mani M., Chang J.H., Dhanesh Gandhi A., Kayal Vizhi D., Pavithra S., Mohanraj K., Mohanbabu B., Babu B., Balachandran S., Kumaresan S. Environmental and biomedical applications of AgNPs synthesized using the aqueous extract of Solanum surattense leaf. Inorg. Chem. Commun. 2020;121:108228. doi: 10.1016/j.inoche.2020.108228. DOI
Chandhirasekar K., Thendralmanikandan A., Thangavelu P., Nguyen B.-S., Nguyen T.-A., Sivashanmugan K., Nareshkumar A., Nguyen V.-H. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater. Lett. 2021;287:129265. doi: 10.1016/j.matlet.2020.129265. DOI
Orbán-Gyapai O., Liktor-Busa E., Kúsz N., Stefkó D., Urbán E., Hohmann J., Vasas A. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia. 2017;118:101–106. doi: 10.1016/j.fitote.2017.03.009. PubMed DOI
Wang D., Meng J., Xu K., Xiao R., Xu M., Liu Y., Zhao Y., Yao P., Yan H., Liu L. Evaluation of oral subchronic toxicity of Pu-erh green tea (Camellia sinensis var. Assamica) extract in Sprague Dawley rats. J. Ethnopharmacol. 2012;142:836–844. doi: 10.1016/j.jep.2012.06.011. PubMed DOI
Liu J.-Y., He D., Xing Y.-F., Zeng W., Ren K., Zhang C., Lu Y., Yang S., Ou S.-J., Wang Y., et al. Effects of bioactive components of Pu-erh tea on gut microbiomes and health: A review. Food Chem. 2021;353:129439. doi: 10.1016/j.foodchem.2021.129439. PubMed DOI
Jamróz E., Kulawik P., Tkaczewska J., Guzik P., Zając M., Juszczak L., Krzyściak P., Turek K. The effects of active double-layered furcellaran/gelatin hydrolysate film system with Ala-Tyr peptide on fresh Atlantic mackerel stored at −18 °C. Food Chem. 2021;338:127867. doi: 10.1016/j.foodchem.2020.127867. PubMed DOI
Zhou X., Yu X., Xie F., Fan Y., Xu X., Qi J., Xiong G., Gao X., Zhang F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021:106695. doi: 10.1016/j.foodhyd.2021.106695. DOI
Zhang W., Shu C., Chen Q., Cao J., Jiang W. The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem. 2019;299:125109. doi: 10.1016/j.foodchem.2019.125109. PubMed DOI
Jamróz E., Tkaczewska J., Juszczak L., Zimowska M., Kawecka A., Krzyściak P., Skóra M. The influence of lingonberry extract on the properties of novel, double-layered biopolymer films based on furcellaran, CMC and a gelatin hydrolysate. Food Hydrocoll. 2021:107334. doi: 10.1016/j.foodhyd.2021.107334. DOI
Dai L., Long Z., Chen J., An X., Cheng D., Khan A., Ni Y. Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties. ACS Appl. Mater. Interfaces. 2017;9:5477–5485. doi: 10.1021/acsami.6b14471. PubMed DOI
Marangoni L., Vieira R.P., Jamróz E., Anjos C.A.R. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr. Polym. 2020:117221. doi: 10.1016/j.carbpol.2020.117221. PubMed DOI
Haghighi H., Licciardello F., Fava P., Siesler H.W., Pulvirenti A. Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag. Shelf Life. 2020;26:100551. doi: 10.1016/j.fpsl.2020.100551. DOI
Tkaczewska J., Kulawik P., Jamróz E., Guzik P., Zając M., Szymkowiak A., Turek K. One- and double-layered furcellaran/carp skin gelatin hydrolysate film system with antioxidant peptide as an innovative packaging for perishable foods products. Food Chem. 2021;351:129347. doi: 10.1016/j.foodchem.2021.129347. PubMed DOI
Tkaczewska J., Jamróz E., Kulawik P., Morawska M., Szczurowska K. Evaluation of the potential use of a carp (Cyprinus carpio) skin gelatine hydrolysate as an antioxidant component. Food Funct. 2019;10:1038–1048. doi: 10.1039/C8FO02492H. PubMed DOI
Basumatary K., Daimary P., Das S.K., Thapa M., Singh M., Mukherjee A., Kumar S. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packag. Shelf Life. 2018;17:99–106. doi: 10.1016/j.fpsl.2018.06.003. DOI
Pluta-Kubica A., Jamróz E., Kawecka A., Juszczak L., Krzyściak P. Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int. J. Biol. Macromol. 2019 doi: 10.1016/j.ijbiomac.2019.11.102. PubMed DOI
Kumar R., Ghoshal G., Goyal M. Development and characterization of corn starch based nanocomposite film with AgNPs and plant extract. Mater. Sci. Energy Technol. 2020;3:672–678. doi: 10.1016/j.mset.2020.07.004. DOI
Palem R.R., Ganesh S.D., Kronekova Z., Sláviková M., Saha N., Saha P. Green synthesis of silver nanoparticles and biopolymer nanocomposites: A comparative study on physico-chemical, antimicrobial and anticancer activity. Bull. Mater. Sci. 2018;41:55. doi: 10.1007/s12034-018-1567-5. DOI
Li W., Qu F., Chen Y., Sun Y., Zhang J., Xie G., You Q., Xu H. Antimicrobial activity of sliver nanoparticles synthesized by the leaf extract of Cinnamomum camphora. Biochem. Eng. J. 2021;172:108050. doi: 10.1016/j.bej.2021.108050. DOI
Jamróz E., Khachatryan G., Kopel P., Juszczak L., Kawecka A., Krzyściak P., Kucharek M., Bębenek Z., Zimowska M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr. Polym. 2020:116244. doi: 10.1016/j.carbpol.2020.116244. PubMed DOI
Sharma S., Sanpui P., Chattopadhyay A., Ghosh S.S. Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. Rsc Adv. 2012;2:5837–5843. doi: 10.1039/c2ra00006g. DOI
Kabekkodu S.E. ICDD PDF-4+ 2015 00-067-1540. International Centre for Diffraction Data; Newtown Square, PA, USA: 2015.
Li X., Xie H., Lin J., Xie W., Ma X. Characterization and biodegradation of chitosan–alginate polyelectrolyte complexes. Polym. Degrad. Stab. 2009;94:1–6. doi: 10.1016/j.polymdegradstab.2008.10.017. DOI
Yoksan R., Chirachanchai S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater. Sci. Eng. C. 2010;30:891–897. doi: 10.1016/j.msec.2010.04.004. DOI
Das B., Dash S.K., Mandal D., Ghosh T., Chattopadhyay S., Tripathy S., Das S., Dey S.K., Das D., Roy S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017;10:862–876. doi: 10.1016/j.arabjc.2015.08.008. DOI
Dara P.K., Mahadevan R., Digita P.A., Visnuvinayagam S., Kumar L.R.G., Mathew S., Ravishankar C.N., Anandan R. Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): In vitro studies on antioxidant and antibacterial applications. SN Appl. Sci. 2020;2:665. doi: 10.1007/s42452-020-2261-y. DOI
Lee J.H., Jeong D., Kanmani P. Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity. Carbohydr. Polym. 2019:115159. doi: 10.1016/j.carbpol.2019.115159. PubMed DOI
Kanmani P., Rhim J.-W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014;35:644–652. doi: 10.1016/j.foodhyd.2013.08.011. DOI
Gudimalla A., Jose J., Varghese R.J., Thomas S. Green Synthesis of Silver Nanoparticles Using Nymphae odorata Extract Incorporated Films and Antimicrobial Activity. J. Polym. Environ. 2021;29:1412–1423. doi: 10.1007/s10924-020-01959-6. DOI
Shankar S., Tanomrod N., Rawdkuen S., Rhim J.-W. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol. 2016;92:842–849. doi: 10.1016/j.ijbiomac.2016.07.107. PubMed DOI
Tkaczewska J., Borawska-Dziadkiewicz J., Kulawik P., Duda I., Morawska M., Mickowska B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT. 2020;117:108616. doi: 10.1016/j.lwt.2019.108616. DOI
Tkaczewska J., Bukowski M., Mak P. Identification of antioxidant peptides in enzymatic hydrolysates of carp (Cyprinus carpio) skin gelatin. Molecules. 2019;24:97. doi: 10.3390/molecules24010097. PubMed DOI PMC
Nunes M.R., de Souza Maguerroski Castilho M., de Lima Veeck A.P., da Rosa C.G., Noronha C.M., Maciel M.V.O.B., Barreto P.M. Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr. Polym. 2018;192:37–43. doi: 10.1016/j.carbpol.2018.03.014. PubMed DOI
Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules. 2020;25:3191. doi: 10.3390/molecules25143191. PubMed DOI PMC
Armstrong L., do Carmo M.A.V., Wu Y., Esmerino L.A., Azevedo L., Zhang L., Granato D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res. Int. 2020;137:109430. doi: 10.1016/j.foodres.2020.109430. PubMed DOI
Ropiak H.M., Ramsay A., Mueller-Harvey I. Condensed tannins in extracts from European medicinal plants and herbal products. J. Pharm. Biomed. Anal. 2016;121:225–231. doi: 10.1016/j.jpba.2015.12.034. PubMed DOI
Pereira de Abreu D.A., Paseiro Losada P., Maroto J., Cruz J.M. Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca) Innov. Food Sci. Emerg. Technol. 2011;12:50–55. doi: 10.1016/j.ifset.2010.12.006. DOI
Ortega F., Arce V.B., Garcia M.A. Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent. Carbohydr. Polym. 2021;252:117208. doi: 10.1016/j.carbpol.2020.117208. PubMed DOI
Mathew S., Jayakumar A., Kumar V.P., Mathew J., Radhakrishnan E.K. One-step synthesis of eco-friendly boiled rice starch blended polyvinyl alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol. 2019;139:475–485. doi: 10.1016/j.ijbiomac.2019.07.187. PubMed DOI
Feng Q.L., Wu J., Chen G.Q., Cui F., Kim T., Kim J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PubMed DOI
Kim J.S., Kuk E., Yu K.N., Kim J.-H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.-Y. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Shankar S., Rhim J.-W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 2015;130:353–363. doi: 10.1016/j.carbpol.2015.05.018. PubMed DOI
Priyadarshini S., Gopinath V., Priyadharsshini N.M., MubarakAli D., Velusamy P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces. 2013;102:232–237. doi: 10.1016/j.colsurfb.2012.08.018. PubMed DOI