Creating a Material Spectral Library for Plaster and Mortar Material Determination
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS21/054/OHK1/1T/11
Czech Technical University in Prague
PubMed
34832427
PubMed Central
PMC8621938
DOI
10.3390/ma14227030
PII: ma14227030
Knihovny.cz E-zdroje
- Klíčová slova
- material decomposition, reflectance spectroscopy, spectral library,
- Publikační typ
- časopisecké články MeSH
Historic object analysis and the knowledge of composition play an important role in restoration processes. Based on this information, restoration works are conducted. This paper introduces a non-invasive technique of plaster and mortar material decomposition using reflectance spectroscopy. For this purpose, a NIRQuest512-2,5 from Ocean Optics®/Ocean Insight®, is used to create a unique spectral library consisting of various materials. They were carefully selected to include those that were and still are commonly used for a plaster and mortar production. Each material of the spectral library was mapped in detail, verified using scanning electronic microscope (SEM) data, and the results were compared to a previously determined spectral signature. The new spectral library was then tested on 11 unknown plaster and mortar samples and verified using a scanning electronic microscope. It was found that reflectance spectroscopy provides a powerful tool for plaster and mortar material decomposition, although at the moment it cannot fully replace invasive techniques like chemical analyses or other invasive techniques. It provides relevant information that can be used for restoration works.
Zobrazit více v PubMed
Falýnová M., Raeva P., Poloprutský Z., Matoušková E., Housarová E. Complex Analysis and Documentation of Historical Buildings Using new Geomatic Methods. Civ. Eng. J. 2016:1–8. doi: 10.14311/CEJ.2016.04.0027. DOI
Cejpová M., Poloprutský Z., Poučová Š., Bujok A., Rykl M. Application of Geomatics Methods in the Research of Structures of Historical Kitchens. Civ. Eng. J. 2020;29:518–534. doi: 10.14311/CEJ.2020.04.0045. DOI
Attas M., Cloutis E., Collins C., Goltz D., Majzels C., Mansfield J., Mantsch H. Near-infrared spectroscopic imaging in art conservation: Investigation of drawing constituents. J. Cult. Herit. 2003;4:127–136. doi: 10.1016/S1296-2074(03)00024-4. DOI
Köliö A., Honkanen M., Lahdensivu J., Vippola M., Pentti M. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades. Cem. Concr. Res. 2015;78:200–207. doi: 10.1016/j.cemconres.2015.07.009. DOI
Anderson E., Almond M., Matthews W. Analysis of wall plasters and natural sediments from the Neolithic town of Çatalhöyük (Turkey) by a range of analytical techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;133:326–334. doi: 10.1016/j.saa.2014.04.072. PubMed DOI
Singh M., Kumar S.V., Waghmare S. Characterization of 6–11th century A.D decorative lime plasters of rock cut caves of Ellora. Constr. Build. Mater. 2015;98:156–170. doi: 10.1016/j.conbuildmat.2015.08.039. DOI
Buzgar N., Buzatu A., Apopei A.-I., Cotiugă V. In situ Raman spectroscopy at the Voroneţ Monastery (16th century, Romania): New results for green and blue pigments. Vib. Spectrosc. 2014;72:142–148. doi: 10.1016/j.vibspec.2014.03.008. DOI
Vandenabeele P., Bodé S., Alonso A., Moens L. Raman spectroscopic analysis of the Maya wall paintings in Ek’Balam, Mexico. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005;61:2349–2356. doi: 10.1016/j.saa.2005.02.034. PubMed DOI
Morillas H., Maguregui M., Trebolazabala J., Madariaga J. Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;136:1195–1203. doi: 10.1016/j.saa.2014.10.006. PubMed DOI
Robinson H. Spectral Reflectance. Humbolt State University; Arcata, CA, USA: 2019. [(accessed on 24 September 2020)]. Available online: http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson2-1/reflectance.html.
Chu V., Regev L., Weiner S., Boaretto E. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. J. Archaeol. Sci. 2008;35:905–911. doi: 10.1016/j.jas.2007.06.024. DOI
Cheilakou E., Troullinos M., Koui M. Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive Fiber Optics Diffuse Reflectance Spectroscopy (FORS) J. Archaeol. Sci. 2014;41:541–555. doi: 10.1016/j.jas.2013.09.020. DOI
SLUM Urban Meteorology at University of Reading. [(accessed on 27 August 2020)]. Available online: https://urban-meteorology-reading.github.io/SLUM.html.
KLUM_Library GitHub Inc. 2020. [(accessed on 27 August 2020)]. Available online: https://github.com/rebeccailehag/KLUM_library.
ECOSTRESS Spectral Library. California Institute of Technology; Pasadena, CA, USA: 2017. [(accessed on 27 August 2020)]. Available online: https://speclib.jpl.nasa.gov/
Svoboda L., Bažantová Z., Myška M., Novák J., Tobolka Z., Vávra R., Vimmrová A., Výborný J. Prague ČVUT v Praze. CTU; Prague, Czech Republic: 2013. Building Materials 3. (In Czech)
Čáchová M., Koňáková D., Vejmelková E., Bartoňková E., Keppert M., Černý R. Properties of lime-cement plasters incorporating ceramic powder. Int. J. Comput. Methods Exp. Meas. 2017;5:144–153. doi: 10.2495/CMEM-V5-N2-144-153. DOI
Koňáková D., Čáchová M., Vejmelková E., Keppert M., Jerman M., Bayer P., Rovnaníková P., Černý R. Lime-based plasters with combined expanded clay-silica aggregate: Microstructure, texture and engineering properties. Cem. Concr. Compos. 2017;83:374–383. doi: 10.1016/j.cemconcomp.2017.08.005. DOI
Oleson J., Brandon C., Cramer S., Cucitore R., Gotti E., Hohlfelder R. The Romacons Project: A Contribution to the Historical and Engineering Analysis of Hydraulic Concrete in Roman Maritime Structures. Int. J. Naut. Archaeol. 2004;33:199–229. doi: 10.1111/j.1095-9270.2004.00020.x. DOI
Ocean Insight. 2020. [(accessed on 25 August 2020)]. Available online: https://www.oceaninsight.com/
Fibre Optics Probe Ocean Insight. 2020. [(accessed on 26 August 2020)]. Available online: https://www.oceaninsight.com/products/fibers-and-probes/probes/reflectionbackscatter-probes/qr600-7-vis125bx/?qty=1.
Labsphere Spectralon—Diffuse Reflectance Targets. 2020. [(accessed on 25 August 2020)]. Available online: http://labsphere.com/labsphere-products-solutions/materials-coatings-2/targets-standards/diffuse-reflectance-standards/
Energy Dispersive Microscopy (EDS) 2020. [(accessed on 31 August 2020)]. Available online: https://www.mri.psu.edu/materials-characterization-lab/characterization-techniques/energy-dispersive-spectroscopy-eds.
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Praha. 2020. [(accessed on 31 August 2020)]. Available online: https://mech.fsv.cvut.cz/web/index.php?&lang=en.
Phenom X.L. NanoScience Instruments. 2020. [(accessed on 31 August 2020)]. Available online: https://www.nanoscience.com/products/scanning-electron-microscopes/phenom-xl/
Němeček J., Lukeš J. High-speed mechanical mapping of blended cement pastes and its comparison with standard modes of nanoindentation. Mater. Today Commun. 2020;23:100806. doi: 10.1016/j.mtcomm.2019.100806. DOI
Němeček J., Králík V., Vondřejc J. Micromechanical analysis of heterogeneous structural materials. Cem. Concr. Compos. 2013;36:85–92. doi: 10.1016/j.cemconcomp.2012.06.015. DOI
Frankeová D., Slížková Z. Determination of the pozzolanic activity of mortar’s components by thermal analysis. J. Therm. Anal. Calorim. 2016;125:1115–1123. doi: 10.1007/s10973-016-5360-7. DOI
Mácová P., Sotiriadis K., Slížková Z., Šašek P., Řehoř M., Závada J. Evaluation of Physical Properties of a Metakaolin-Based Alkali-Activated Binder Containing Waste Foam Glass. Materials. 2020;13:5458. doi: 10.3390/ma13235458. PubMed DOI PMC
L3Harris Geospatial Spectral Angle Mapper. 2020. [(accessed on 25 August 2020)]. Available online: https://www.harrisgeospatial.com/docs/SpectralAngleMapper.html.
The MathWorks Inc Matlab Hyperspectral Toolbox. 2017. [(accessed on 14 November 2021)]. Available online: https://www.mathworks.com/matlabcentral/fileexchange/61630-matlab-hyperspectral-toolbox.
L3Harris Geospatial Spectral Information Divergence. 2020. [(accessed on 26 August 2020)]. Available online: https://www.harrisgeospatial.com/docs/SpectralInformationDivergence.html.
L3Harris Geospatial Spectral Feature Fitting. 2020. [(accessed on 25 August 2020)]. Available online: http://www.exelisvis.com/docs/SpectralFeatureFitting.html.
L3Harris geospatial Spectral Analyst. 2020. [(accessed on 26 August 2020)]. Available online: https://www.harrisgeospatial.com/docs/SpectralAnalyst.html.
SourceForge QSdata. Slashdot Media. 2020. [(accessed on 26 August 2020)]. Available online: https://sourceforge.net/projects/qsdata/
Gagalowicz A., Philips W. Proceeding of the 11th International Conference, CAIP 2005, Versailles, France, 5–8 September 2005. Springer; New York, NY, USA: 2005. Computer Analysis of Images and Patterns.
Chang C.-I. Hyperspectral Data Processing: Algorithm Design and Analysis. Wiley-Interscience; Hoboken, NJ, USA: 2013.
Clark R., Roush T. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth. 1984;89:6329–6340. doi: 10.1029/JB089iB07p06329. DOI
Alparslan E., Fuatince M. Image Enhancement by Local Histogram Stretching. IEEE Trans. Syst. Man Cybern. 1981;11:376–385.
Wu C., Landgrebe D., Swain P. The Decision Treeapproach to Classification. NASA; Washington, DC, USA: 1975. [(accessed on 1 May 2021)]. Available online: https://ntrs.nasa.gov/citations/19750021455.