Evaluation of Physical Properties of a Metakaolin-Based Alkali-Activated Binder Containing Waste Foam Glass

. 2020 Nov 30 ; 13 (23) : . [epub] 20201130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266214

Grantová podpora
Framework Strategy AV21, Research program 23: "City as a Laboratory of Change; Construction, Historical Heritage and Place for Safe and Quality Life" Czech Academy of Sciences

Foam glass production process redounds to large quantities of waste that, if not recycled, are stockpiled in the environment. In this work, increasing amounts of waste foam glass were used to produce metakaolin-based alkali-activated composites. Phase composition and morphology were investigated by means of X-ray powder diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Subsequently, the physical properties of the materials (density, porosity, thermal conductivity and mechanical strength) were determined. The analysis showed that waste foam glass functioned as an aggregate, introducing irregular voids in the matrix. The obtained composites were largely porous (>45%), with a thermal conductivity coefficient similar to that of timber (<0.2 W/m∙K). Optimum compressive strength was achieved for 10% incorporation of the waste by weight in the binder. The resulting mechanical properties suggest the suitability of the produced materials for use in thermal insulating applications where high load-bearing capacities are not required. Mechanical or chemical treatment of the waste is recommended for further exploitation of its potential in participating in the alkali activation process.

Zobrazit více v PubMed

Cui S.P., Zhang J.G., Tian Y.L., Sun S.B., Wu Z.W., Liu W.C. Generation review on the production line development of foam glass at home and abroad. Adv. Mater. Res. 2014;915–916:524–531. doi: 10.4028/www.scientific.net/AMR.915-916.524. DOI

El-Haggar S.M. Sustainable Industrial Design and Waste Management. Elsevier Inc.; Burlington, MA, USA: 2007.

Zhang H. Building Materials in Civil Engineering. 1st ed. Woodhead Publishing Limited; Cambridge, UK: 2011.

Manevich V.E., Subbotin K.Y. Foam glass and problems of energy conservation. Glas. Ceram. 2008;65:105–108. doi: 10.1007/s10717-008-9026-1. DOI

Ferone C., Capasso I., Bonati A., Roviello G., Montagnaro F., Santoro L., Turco R., Cioffi R. Sustainable management of water potabilization sludge by means of geopolymers production. J. Clean. Prod. 2019;229:1–9. doi: 10.1016/j.jclepro.2019.04.299. DOI

Yang Z., Mocadlo R., Zhao M., Sisson R.D., Tao M., Liang J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr. Build. Mater. 2019;221:308–317. doi: 10.1016/j.conbuildmat.2019.06.034. DOI

Sotiriadis K., Guzii S.G., Mácová P., Viani A., Dvořák K., Drdácký M. Thermal Behavior of an Intumescent Alkaline Aluminosilicate Composite Material for Fire Protection of Structural Elements. J. Mater. Civ. Eng. 2019;31:1–9. doi: 10.1061/(ASCE)MT.1943-5533.0002702. DOI

Provis J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. Constr. 2014;47:11–25. doi: 10.1617/s11527-013-0211-5. DOI

Krivenko P. Why alkaline activation—60 years of the theory and practice of alkali-activated materials. J. Ceram. Sci. Technol. 2017;8:323–334. doi: 10.4416/JCST2017-00042. DOI

Li C., Sun H., Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010;40:1341–1349. doi: 10.1016/j.cemconres.2010.03.020. DOI

Bobirică C., Shim J.H., Pyeon J.H., Park J.Y. Influence of waste glass on the microstructure and strength of inorganic polymers. Ceram. Int. 2015;41:13638–13649. doi: 10.1016/j.ceramint.2015.07.160. DOI

Chokkha S., Phetnat P., Chandadi W., Srisitthigul M. Use of waste glass as a reinforce material in calcined-kaolin based geopolymer. Key Eng. Mater. 2017;751:556–562. doi: 10.4028/www.scientific.net/KEM.751.556. DOI

Hao H., Lin K.-L., Wang D., Chao S.-J., Shiu H.-S., Cheng T.-W., Hwang C.-L. Utilization of solar panel waste glass for metakaolinite-based geopolymer synthesis. Environ. Prog. Sustain. Energy. 2013;32:797–803. doi: 10.1002/ep.11693. DOI

Novais R.M., Ascensão G., Seabra M.P., Labrincha J.A. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Manag. 2016;52:245–255. doi: 10.1016/j.wasman.2016.04.003. PubMed DOI

Toniolo N., Taveri G., Hurle K., Roether J.A., Ercole P., Dlouhý I., Boccaccini A.R. Fly-Ash-Based geopolymers: How the sddition of recycled glass or red mud waste influences the structural and mechanical properties. J. Ceram. Sci. Technol. 2017;8:411–420. doi: 10.4416/JCST2017-00053. DOI

Xiao R., Ma Y., Jiang X., Zhang M., Zhang Y., Wang Y., Huang B., He Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J. Clean. Prod. 2020;252 doi: 10.1016/j.jclepro.2019.119610. DOI

Kristály F., Szabó R., Mádai F., Debreczeni Á., Mucsi G. Lightweight composite from fly ash geopolymer and glass foam. J. Sustain. Cem. Mater. 2020:1–22. doi: 10.1080/21650373.2020.1742246. DOI

Cyr M., Idir R., Poinot T. Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2012;47:2782–2797. doi: 10.1007/s10853-011-6107-2. DOI

Rashidian-Dezfouli H., Rangaraju P.R. Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder. Mater. Constr. 2017;67 doi: 10.3989/mc.2017.05416. DOI

Tho-In T., Sata V., Boonserm K., Chindaprasirt P. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J. Clean. Prod. 2016;172:2892–2898. doi: 10.1016/j.jclepro.2017.11.125. DOI

Zhang S., Keulen A., Arbi K., Ye G. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res. 2017;102:29–40. doi: 10.1016/j.cemconres.2017.08.012. DOI

El-Naggar M.R., El-Dessouky M.I. Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations. Constr. Build. Mater. 2017;132:543–555. doi: 10.1016/j.conbuildmat.2016.12.023. DOI

Torres-Carrasco M., Puertas F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015;90:397–408. doi: 10.1016/j.jclepro.2014.11.074. DOI

Toniolo N., Rincón A., Roether J.A., Ercole P., Bernardo E., Boccaccini A.R. Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr. Build. Mater. 2018;188:1077–1084. doi: 10.1016/j.conbuildmat.2018.08.096. DOI

ÚNMZ Basic Analysis of Silicates—Common Regulations, ČSN 72 0100 2009. ÚNMZ; Prague, Czech Republic: 2009.

ISO [International Organization for Standardization] Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method. International Organization for Standardization; Geneva, Switzerland: 2010. ISO 9277:2010(E)

Bednařík V., Vondruška M. Conductometric analysis of water glass. Chem. List. 2008;102:444–446.

Bai C., Li H., Bernardo E., Colombo P. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 2019;45:7196–7202. doi: 10.1016/j.ceramint.2018.12.227. DOI

Sotiriadis K., Guzii S., Kumpová I., Mácová P., Viani A. The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass. Solid State Phenom. 2017;267:58–62. doi: 10.4028/www.scientific.net/SSP.267.58. DOI

Tchakoute Kouamo H., Elimbi A., Mbey J.A., Ngally Sabouang C.J., Njopwouo D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012;35:960–969. doi: 10.1016/j.conbuildmat.2012.04.023. DOI

Provis J.L., Yong S.L., Van Deventer J.S.J. Characterising the reaction of metakaolin in an alkaline environment by XPS, and time- and spatially-resolved FTIR spectroscopy. In: Scrivener K., Favier A., editors. Calcined Clays for Sustainable Concrete. Springer; Dordrecht, The Netherlands: 2015. pp. 299–304.

White C.E., Provis J.L., Proffen T., Riley D.P., Van Deventer J.S.J. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: The case of metakaolin. Phys. Chem. Chem. Phys. 2010;12:3239–3245. doi: 10.1039/b922993k. PubMed DOI

Kljajević L.M., Nenadović S.S., Nenadović M.T., Bundaleski N.K., Todorović B., Pavlović V.B., Rakočević Z.L. Structural and chemical properties of thermally treated geopolymer samples. Ceram. Int. 2017;43:6700–6708. doi: 10.1016/j.ceramint.2017.02.066. DOI

Yunsheng Z., Wei S., Zongjin L. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl. Clay Sci. 2010;47:271–275. doi: 10.1016/j.clay.2009.11.002. DOI

Allahverdi A., Najafi Kani E., Hossain K.M.A., Lachemi M. Methods to control efflorescence in alkali-activated cement-based materials. In: Pacheco-Torgal F., Labrincha J.A., Leonelli C., Palomo A., Chindaprasirt P., editors. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Limited; Cambridge, UK: 2015. pp. 463–483.

Gong X.Z., Tian Y.L., Zhang L.J. A comparative life cycle assessment of typical foam glass production. Mater. Sci. Forum. 2018;913:1054–1061. doi: 10.4028/www.scientific.net/MSF.913.1054. DOI

Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional dependence of pore structure, strengthand freezing-thawing resistance of metakaolin-based geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC

Pouhet R., Cyr M., Bucher R. Influence of the initial water content in flash calcined metakaolin-based geopolymer. Constr. Build. Mater. 2019;201:421–429. doi: 10.1016/j.conbuildmat.2018.12.201. DOI

Chen L., Wang Z., Wang Y., Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials. 2016;9:767. doi: 10.3390/ma9090767. PubMed DOI PMC

Barbosa V.F.F., MacKenzie K.J.D., Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000;2:309–317. doi: 10.1016/S1466-6049(00)00041-6. DOI

Engineering ToolBox Thermal Conductivity of Selected Materials and Gases. [(accessed on 8 October 2020)]; Available online: https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.

Kryvenko P., Kyrychok V., Guzii S. Influence of the ratio of oxides and temperature on the structure formation of alkaline hydro-aluminosilicates. East. Eur. J. Enterp. Technol. 2016;5:40–48. doi: 10.15587/1729-4061.2016.79605. DOI

Hajimohammadi A., Ngo T., Kashani A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018;193:593–603. doi: 10.1016/j.jclepro.2018.05.086. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Creating a Material Spectral Library for Plaster and Mortar Material Determination

. 2021 Nov 19 ; 14 (22) : . [epub] 20211119

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...