Evaluation of Physical Properties of a Metakaolin-Based Alkali-Activated Binder Containing Waste Foam Glass
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Framework Strategy AV21, Research program 23: "City as a Laboratory of Change; Construction, Historical Heritage and Place for Safe and Quality Life"
Czech Academy of Sciences
PubMed
33266214
PubMed Central
PMC7730103
DOI
10.3390/ma13235458
PII: ma13235458
Knihovny.cz E-zdroje
- Klíčová slova
- alkali-activated materials, composite materials, foam glass, metakaolin, thermal insulation, waste,
- Publikační typ
- časopisecké články MeSH
Foam glass production process redounds to large quantities of waste that, if not recycled, are stockpiled in the environment. In this work, increasing amounts of waste foam glass were used to produce metakaolin-based alkali-activated composites. Phase composition and morphology were investigated by means of X-ray powder diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Subsequently, the physical properties of the materials (density, porosity, thermal conductivity and mechanical strength) were determined. The analysis showed that waste foam glass functioned as an aggregate, introducing irregular voids in the matrix. The obtained composites were largely porous (>45%), with a thermal conductivity coefficient similar to that of timber (<0.2 W/m∙K). Optimum compressive strength was achieved for 10% incorporation of the waste by weight in the binder. The resulting mechanical properties suggest the suitability of the produced materials for use in thermal insulating applications where high load-bearing capacities are not required. Mechanical or chemical treatment of the waste is recommended for further exploitation of its potential in participating in the alkali activation process.
Albrechtova Střední Škola Tyršova 611 2 73701 Český Těšín Czech Republic
Brown Coal Research Institute JSC Budovatelů 2830 3 43401 Most Czech Republic
Continental Automotive Czech Republic s r o Hradecká 1092 50601 Jičín Czech Republic
Zobrazit více v PubMed
Cui S.P., Zhang J.G., Tian Y.L., Sun S.B., Wu Z.W., Liu W.C. Generation review on the production line development of foam glass at home and abroad. Adv. Mater. Res. 2014;915–916:524–531. doi: 10.4028/www.scientific.net/AMR.915-916.524. DOI
El-Haggar S.M. Sustainable Industrial Design and Waste Management. Elsevier Inc.; Burlington, MA, USA: 2007.
Zhang H. Building Materials in Civil Engineering. 1st ed. Woodhead Publishing Limited; Cambridge, UK: 2011.
Manevich V.E., Subbotin K.Y. Foam glass and problems of energy conservation. Glas. Ceram. 2008;65:105–108. doi: 10.1007/s10717-008-9026-1. DOI
Ferone C., Capasso I., Bonati A., Roviello G., Montagnaro F., Santoro L., Turco R., Cioffi R. Sustainable management of water potabilization sludge by means of geopolymers production. J. Clean. Prod. 2019;229:1–9. doi: 10.1016/j.jclepro.2019.04.299. DOI
Yang Z., Mocadlo R., Zhao M., Sisson R.D., Tao M., Liang J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr. Build. Mater. 2019;221:308–317. doi: 10.1016/j.conbuildmat.2019.06.034. DOI
Sotiriadis K., Guzii S.G., Mácová P., Viani A., Dvořák K., Drdácký M. Thermal Behavior of an Intumescent Alkaline Aluminosilicate Composite Material for Fire Protection of Structural Elements. J. Mater. Civ. Eng. 2019;31:1–9. doi: 10.1061/(ASCE)MT.1943-5533.0002702. DOI
Provis J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. Constr. 2014;47:11–25. doi: 10.1617/s11527-013-0211-5. DOI
Krivenko P. Why alkaline activation—60 years of the theory and practice of alkali-activated materials. J. Ceram. Sci. Technol. 2017;8:323–334. doi: 10.4416/JCST2017-00042. DOI
Li C., Sun H., Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010;40:1341–1349. doi: 10.1016/j.cemconres.2010.03.020. DOI
Bobirică C., Shim J.H., Pyeon J.H., Park J.Y. Influence of waste glass on the microstructure and strength of inorganic polymers. Ceram. Int. 2015;41:13638–13649. doi: 10.1016/j.ceramint.2015.07.160. DOI
Chokkha S., Phetnat P., Chandadi W., Srisitthigul M. Use of waste glass as a reinforce material in calcined-kaolin based geopolymer. Key Eng. Mater. 2017;751:556–562. doi: 10.4028/www.scientific.net/KEM.751.556. DOI
Hao H., Lin K.-L., Wang D., Chao S.-J., Shiu H.-S., Cheng T.-W., Hwang C.-L. Utilization of solar panel waste glass for metakaolinite-based geopolymer synthesis. Environ. Prog. Sustain. Energy. 2013;32:797–803. doi: 10.1002/ep.11693. DOI
Novais R.M., Ascensão G., Seabra M.P., Labrincha J.A. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Manag. 2016;52:245–255. doi: 10.1016/j.wasman.2016.04.003. PubMed DOI
Toniolo N., Taveri G., Hurle K., Roether J.A., Ercole P., Dlouhý I., Boccaccini A.R. Fly-Ash-Based geopolymers: How the sddition of recycled glass or red mud waste influences the structural and mechanical properties. J. Ceram. Sci. Technol. 2017;8:411–420. doi: 10.4416/JCST2017-00053. DOI
Xiao R., Ma Y., Jiang X., Zhang M., Zhang Y., Wang Y., Huang B., He Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J. Clean. Prod. 2020;252 doi: 10.1016/j.jclepro.2019.119610. DOI
Kristály F., Szabó R., Mádai F., Debreczeni Á., Mucsi G. Lightweight composite from fly ash geopolymer and glass foam. J. Sustain. Cem. Mater. 2020:1–22. doi: 10.1080/21650373.2020.1742246. DOI
Cyr M., Idir R., Poinot T. Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2012;47:2782–2797. doi: 10.1007/s10853-011-6107-2. DOI
Rashidian-Dezfouli H., Rangaraju P.R. Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder. Mater. Constr. 2017;67 doi: 10.3989/mc.2017.05416. DOI
Tho-In T., Sata V., Boonserm K., Chindaprasirt P. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J. Clean. Prod. 2016;172:2892–2898. doi: 10.1016/j.jclepro.2017.11.125. DOI
Zhang S., Keulen A., Arbi K., Ye G. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res. 2017;102:29–40. doi: 10.1016/j.cemconres.2017.08.012. DOI
El-Naggar M.R., El-Dessouky M.I. Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations. Constr. Build. Mater. 2017;132:543–555. doi: 10.1016/j.conbuildmat.2016.12.023. DOI
Torres-Carrasco M., Puertas F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015;90:397–408. doi: 10.1016/j.jclepro.2014.11.074. DOI
Toniolo N., Rincón A., Roether J.A., Ercole P., Bernardo E., Boccaccini A.R. Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr. Build. Mater. 2018;188:1077–1084. doi: 10.1016/j.conbuildmat.2018.08.096. DOI
ÚNMZ Basic Analysis of Silicates—Common Regulations, ČSN 72 0100 2009. ÚNMZ; Prague, Czech Republic: 2009.
ISO [International Organization for Standardization] Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method. International Organization for Standardization; Geneva, Switzerland: 2010. ISO 9277:2010(E)
Bednařík V., Vondruška M. Conductometric analysis of water glass. Chem. List. 2008;102:444–446.
Bai C., Li H., Bernardo E., Colombo P. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 2019;45:7196–7202. doi: 10.1016/j.ceramint.2018.12.227. DOI
Sotiriadis K., Guzii S., Kumpová I., Mácová P., Viani A. The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass. Solid State Phenom. 2017;267:58–62. doi: 10.4028/www.scientific.net/SSP.267.58. DOI
Tchakoute Kouamo H., Elimbi A., Mbey J.A., Ngally Sabouang C.J., Njopwouo D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012;35:960–969. doi: 10.1016/j.conbuildmat.2012.04.023. DOI
Provis J.L., Yong S.L., Van Deventer J.S.J. Characterising the reaction of metakaolin in an alkaline environment by XPS, and time- and spatially-resolved FTIR spectroscopy. In: Scrivener K., Favier A., editors. Calcined Clays for Sustainable Concrete. Springer; Dordrecht, The Netherlands: 2015. pp. 299–304.
White C.E., Provis J.L., Proffen T., Riley D.P., Van Deventer J.S.J. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: The case of metakaolin. Phys. Chem. Chem. Phys. 2010;12:3239–3245. doi: 10.1039/b922993k. PubMed DOI
Kljajević L.M., Nenadović S.S., Nenadović M.T., Bundaleski N.K., Todorović B., Pavlović V.B., Rakočević Z.L. Structural and chemical properties of thermally treated geopolymer samples. Ceram. Int. 2017;43:6700–6708. doi: 10.1016/j.ceramint.2017.02.066. DOI
Yunsheng Z., Wei S., Zongjin L. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl. Clay Sci. 2010;47:271–275. doi: 10.1016/j.clay.2009.11.002. DOI
Allahverdi A., Najafi Kani E., Hossain K.M.A., Lachemi M. Methods to control efflorescence in alkali-activated cement-based materials. In: Pacheco-Torgal F., Labrincha J.A., Leonelli C., Palomo A., Chindaprasirt P., editors. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Limited; Cambridge, UK: 2015. pp. 463–483.
Gong X.Z., Tian Y.L., Zhang L.J. A comparative life cycle assessment of typical foam glass production. Mater. Sci. Forum. 2018;913:1054–1061. doi: 10.4028/www.scientific.net/MSF.913.1054. DOI
Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional dependence of pore structure, strengthand freezing-thawing resistance of metakaolin-based geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC
Pouhet R., Cyr M., Bucher R. Influence of the initial water content in flash calcined metakaolin-based geopolymer. Constr. Build. Mater. 2019;201:421–429. doi: 10.1016/j.conbuildmat.2018.12.201. DOI
Chen L., Wang Z., Wang Y., Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials. 2016;9:767. doi: 10.3390/ma9090767. PubMed DOI PMC
Barbosa V.F.F., MacKenzie K.J.D., Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000;2:309–317. doi: 10.1016/S1466-6049(00)00041-6. DOI
Engineering ToolBox Thermal Conductivity of Selected Materials and Gases. [(accessed on 8 October 2020)]; Available online: https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
Kryvenko P., Kyrychok V., Guzii S. Influence of the ratio of oxides and temperature on the structure formation of alkaline hydro-aluminosilicates. East. Eur. J. Enterp. Technol. 2016;5:40–48. doi: 10.15587/1729-4061.2016.79605. DOI
Hajimohammadi A., Ngo T., Kashani A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018;193:593–603. doi: 10.1016/j.jclepro.2018.05.086. DOI
Creating a Material Spectral Library for Plaster and Mortar Material Determination