Vaccinia virus mRNAs containing long 5'-poly(A)-leaders lack a canonical 5'-methylguanosine cap
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
41430051
PubMed Central
PMC12722222
DOI
10.1038/s41467-025-67916-w
PII: 10.1038/s41467-025-67916-w
Knihovny.cz E-zdroje
- MeSH
- 5' nepřekládaná oblast genetika MeSH
- adenosin MeSH
- guanosin * analogy a deriváty metabolismus MeSH
- lidé MeSH
- messenger RNA * genetika metabolismus MeSH
- poly A * genetika metabolismus MeSH
- RNA čepičky * genetika metabolismus MeSH
- RNA virová * genetika metabolismus chemie MeSH
- virus vakcinie * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- 7-methylguanosine MeSH Prohlížeč
- adenosin MeSH
- guanosin * MeSH
- messenger RNA * MeSH
- poly A * MeSH
- RNA čepičky * MeSH
- RNA virová * MeSH
The vaccinia virus (VACV) is a prototypical poxvirus that was originally used to eradicate smallpox. Half a century ago, investigation into VACV mRNA substantially contributed to the fundamental discovery of the 5' mRNA cap, a hallmark of all eukaryotic and many viral mRNAs. VACV research also facilitated the identification and understanding of the general mechanism of 5' mRNA cap synthesis. We analyzed VACV transcripts at the level of individual mRNA molecules using a modified 5' RACE method. Our results demonstrate that VACV mRNAs containing long nontemplated 5' poly(A) leaders lack the 5' cap structure in vivo. The probability of the m7G cap occurrence decreases with the increasing number of nontemplated adenosines in the 5' poly(A) leader. Although half of VACV mRNAs with a single nontemplated adenosine still contain the m7G cap, only about 4% of viral mRNAs with leaders consisting of six or more nontemplated adenosines retain the cap. Uncapped mRNA can be transcribed from all genes containing adenosine-rich initiator sequences (INR) within their promoters. Early genes with INR still produce mostly capped transcripts (40%-59%, depending on the gene). However, intermediate mRNAs are less capped (11%-56%) and late mRNAs are mostly uncapped (0%-10% of capped mRNAs, depending on the gene).
Zobrazit více v PubMed
McFadden, G. Poxvirus tropism. PubMed DOI PMC
WHO.
WHO.
MacIntyre, C. R. Reevaluating the Risk of Smallpox Reemergence. PubMed
Melamed, S., Israely, T. & Paran, N. Challenges and achievements in prevention and treatment of smallpox. PubMed PMC
Bogacka, A. et al. Mpox unveiled: Global epidemiology, treatment advances, and prevention strategies. PubMed PMC
Walsh, S. R. & Dolin, R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. PubMed DOI PMC
Baldick, C. J. Jr. & Moss, B. Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes. PubMed DOI PMC
Deng, Y. N., Navarro-Forero, S. & Yang, Z. L. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. PubMed PMC
Grimm, C. et al. Structural basis of poxvirus transcription: vaccinia RNA polymerase complexes. Cell 179, 1537–1550 (2019). PubMed
Ahn, B. Y. & Moss, B. RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. PubMed DOI PMC
Wei, C. M. & Moss, B. Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. PubMed DOI PMC
Boone, R. F. & Moss, B. Methylated 5′-terminal sequences of vaccinia virus mRNA species made in vivo at early and late times after infection. PubMed DOI
Kyrieleis, O. J., Chang, J., de la Pena, M., Shuman, S. & Cusack, S. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. PubMed DOI PMC
Hillen, H. S. et al. Structural basis of poxvirus transcription: transcribing and capping vaccinia complexes. PubMed DOI
Yang, Z., Bruno, D. P., Martens, C. A., Porcella, S. F. & Moss, B. Genome-wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. PubMed DOI PMC
Baldick, C. J. Jr., Keck, J. G. & Moss, B. Mutational analysis of the core, spacer, and initiator regions of vaccinia virus intermediate-class promoters. PubMed DOI PMC
Broyles, S. S. Vaccinia virus transcription. PubMed DOI
Davison, A. J. & Moss, B. Structure of vaccinia virus late promoters. PubMed DOI
Yang, Z. et al. Expression profiling of the intermediate and late stages of poxvirus replication. PubMed DOI PMC
Wright, C. F. & Moss, B. In vitro synthesis of vaccinia virus late mRNA containing a 5′ poly(A) leader sequence. PubMed DOI PMC
Bertholet, C., Van Meir, E., ten Heggeler-Bordier, B. & Wittek, R. Vaccinia virus produces late mRNAs by discontinuous synthesis. PubMed DOI PMC
Schwer, B., Visca, P., Vos, J. C. & Stunnenberg, H. G. Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. PubMed DOI PMC
Baldick, C. J. Jr. & Moss, B. Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. PubMed DOI
Moss, B. Poxvirus vectors: cytoplasmic expression of transferred genes. PubMed DOI
Ahn, B. Y. & Moss, B. Capped poly(A) leaders of variable lengths at the 5′ ends of vaccinia virus late mRNAs. PubMed DOI PMC
Schwer, B. & Stunnenberg, H. G. Vaccinia virus late transcripts generated in vitro have a poly(A) head. PubMed DOI PMC
Dhungel, P., Cao, S. & Yang, Z. The 5′-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PubMed DOI PMC
Jha, S. et al. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase. PubMed DOI PMC
Khalatyan, N. et al. Ribosome customization and functional diversification among P-stalk proteins regulate late poxvirus protein synthesis. PubMed PMC
Park, C., Ferrell, A. J., Meade, N., Shen, P. S. & Walsh, D. Distinct non-canonical translation initiation modes arise for specific host and viral mRNAs during poxvirus-induced shutoff. PubMed PMC
Sýkora, M. et al. Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin. PubMed DOI PMC
Vopalensky, V., Sykora, M., Masek, T. & Pospisek, M. Messenger RNAs of yeast virus-like elements contain non-templated 5′ Poly(A) leaders, and their expression is independent of eIF4E and Pab1. PubMed DOI PMC
Furuichi, Y. Discovery of m(7)G-cap in eukaryotic mRNAs. PubMed DOI PMC
Urushibara, T., Furuichi, Y., Nishimura, C. & Miura, K. A modified structure at the 5′-terminus of mRNA of vaccinia virus. PubMed DOI
Davison, A. J. & Moss, B. Structure of vaccinia virus early promoters. PubMed DOI
Yang, Z., Martens, C. A., Bruno, D. P., Porcella, S. F. & Moss, B. Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs. PubMed DOI PMC
Maruyama, K. & Sugano, S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. PubMed DOI
Parrish, S. & Moss, B. Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. PubMed DOI PMC
Parrish, S., Resch, W. & Moss, B. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. PubMed DOI PMC
Cantu, F. et al. Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs. PubMed DOI PMC
Liu, S. W., Wyatt, L. S., Orandle, M. S., Minai, M. & Moss, B. The D10 decapping enzyme of vaccinia virus contributes to decay of cellular and viral mRNAs and to virulence in mice. PubMed DOI PMC
Liu, S. W., Katsafanas, G. C., Liu, R. K., Wyatt, L. S. & Moss, B. Poxvirus Decapping Enzymes Enhance Virulence by Preventing the Accumulation of dsRNA and the Induction of Innate Antiviral Responses. PubMed DOI PMC
Mulder, J., Robertson, M. E., Seamons, R. A. & Belsham, G. J. Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells. PubMed DOI PMC
Liu, Y. et al. Structural and mechanistic basis of reiterative transcription initiation. PubMed PMC
Murakami, K. S., Shin, Y., Turnbough, C. L. Jr. & Molodtsov, V. X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway. PubMed DOI PMC
Dhungel, P., Cantu, F. M., Molina, J. A. & Yang, Z. Vaccinia virus as a master of host shutoff induction: targeting processes of the central dogma and beyond. PubMed PMC
Lu, C. & Bablanian, R. Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells. PubMed DOI PMC
Ink, B. S. & Pickup, D. J. Vaccinia virus directs the synthesis of early mRNAs containing 5′ poly(A) sequences. PubMed DOI PMC
Kalbacova, M., Spisakova, M., Liskova, J. & Melkova, Z. Lytic infection with vaccinia virus activates caspases in a Bcl-2-inhibitable manner. PubMed DOI
Liskova, J., Knitlova, J., Honner, R. & Melkova, Z. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells. PubMed DOI
Joklik, W. K. The purification fo four strains of poxvirus. PubMed DOI
Humlova, Z., Vokurka, M., Esteban, M. & Melkova, Z. Vaccinia virus induces apoptosis of infected macrophages. PubMed DOI
Hsu, C. Y. & Uludag, H. A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. PubMed DOI
Masek, T., Vopalensky, V., Suchomelova, P. & Pospisek, M. Denaturing RNA electrophoresis in TAE agarose gels. PubMed DOI
Schmidt, W. M. & Mueller, M. W. CapSelect: a highly sensitive method for 5′ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. PubMed DOI PMC
Vopalensky, V. et al. Firefly luciferase gene contains a cryptic promoter. PubMed DOI PMC