Firefly luciferase gene contains a cryptic promoter

. 2008 Sep ; 14 (9) : 1720-9. [epub] 20080812

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18697919

A firefly luciferase (FLuc) counts among the most popular reporters of present-day molecular and cellular biology. In this study, we report a cryptic promoter activity in the luc+ gene, which is the most frequently used version of the firefly luciferase. The FLuc coding region displays cryptic promoter activity both in mammalian and yeast cells. In human CCL13 and Huh7 cells, cryptic transcription from the luc+ gene is 10-16 times weaker in comparison to the strong immediate-early cytomegalovirus promoter. Additionally, we discuss a possible impact of the FLuc gene cryptic promoter on experimental results especially in some fields of the RNA-oriented research, for example, in analysis of translation initiation or analysis of miRNA/siRNA function. Specifically, we propose how this newly described cryptic promoter activity within the FLuc gene might contribute to the previous determination of the strength of the cryptic promoter found in the cDNA corresponding to the hepatitis C virus internal ribosome entry site. Our findings should appeal to the researchers to be more careful when designing firefly luciferase-based assays as well as open the possibility of performing some experiments with the hepatitis C virus internal ribosome entry site, which could not be considered until now.

Zobrazit více v PubMed

Baird S.D., Turcotte M., Korneluk R.G., Holcik M. Searching for IRES. RNA. 2006;12:1755–1785. PubMed PMC

Boshart M., Kluppel M., Schmidt A., Schutz G., Luckow B. Reporter constructs with low background activity utilizing the cat gene. Gene. 1992;110:129–130. PubMed

Boutla A., Delidakis C., Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res. 2003;31:4973–4980. PubMed PMC

Calvin S., Wang J., Emch J., Pitz S., Jacobsen L. FuGENE® HD transfection reagent: Choice of a transfection reagent with minimal off-target effect as analyzed by microarray transcriptional profiling. Biochemica. 2006;4:22–25.

Cheng A.M., Byrom M.W., Shelton J., Ford L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–1297. PubMed PMC

de Wet J.R., Wood K.V., DeLuca M., Helinski D.R., Subramani S. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 1987;7:725–737. PubMed PMC

Dumas E., Staedel C., Colombat M., Reigadas S., Chabas S., Astier-Gin T., Cahour A., Litvak S., Ventura M. A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res. 2003;31:1275–1281. PubMed PMC

ENCODE Project Consortium. Birney E., Stamatoyannopoulos J.A., Dutta A., Guigó R., Gingeras T.R., Margulies E.H., Weng Z., Snyder M., Dermitzakis E.T., et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. PubMed PMC

Giannakis G., Edmondson S.R., Favaloro J.M., Zajac J.D., Greenland K.J. Aberrant cryptic responsiveness of the pCAT 3- and pGL3-promoter reporter vectors. Biotechniques. 2003;35:332–339. PubMed

Greally J.M. Genomics: Encyclopaedia of humble DNA. Nature. 2007;447:782–783. PubMed

Groskreutz D.J., Sherf B.A., Wood K.V., Schenborn E.T. Increased expression and convenience with the new pGL3 luciferase reporter vectors. Promega Notes. 1995;50:2–6.

Hall M.C., Young D.A., Rowan A.D., Edwards D.R., Clark I.M. Cryptic promoter activity of pBLCAT3 induced by overexpression of AP1 factors. Biotechniques. 2002;33:1004–1008. PubMed

Hecht K., Bailey J.E., Minas W. Polycistronic gene expression in yeast versus cryptic promoter elements. FEMS Yeast Res. 2002;2:215–224. PubMed

Hellen C.U., Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Dev. 2001;15:1593–1612. PubMed

Hennecke M., Kwissa M., Metzger K., Oumard A., Kroger A., Schirmbeck R., Reimann J., Hauser H. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res. 2001;29:3327–3334. PubMed PMC

Holcik M., Graber T., Lewis S.M., Lefebvre C.A., Lacasse E., Baird S. Spurious splicing within the XIAP 5′ UTR occurs in the Rluc/Fluc but not the βgal/CAT bicistronic reporter system. RNA. 2005;11:1605–1609. PubMed PMC

James P., Halladay J., Craig E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144:1425–1436. PubMed PMC

Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene. 2003;318:1–23. PubMed

Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res. 2005;33:6593–6602. PubMed PMC

Kozak M. Lessons (not) learned from mistakes about translation. Gene. 2007;403:194–203. PubMed

Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. 2007;104:9667–9672. PubMed PMC

Makelainen K.J., Makinen K. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Gene. 2007;391:275–284. PubMed

Martin M.M., Lee E.J., Buckenberger J.A., Schmittgen T.D., Elton T.S. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 2006;281:18277–18284. PubMed

Martin M.M., Buckenberger J.A., Jiang J., Malana G.E., Nuovo G.J., Chotani M., Feldman D.S., Schmittgen T.D., Elton T.S. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J. Biol. Chem. 2007;282:24262–24269. PubMed PMC

Mašek T., Vopálenský V., Suchomelová P., Pospíšek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 2005;336:46–50. PubMed

Mašek T., Vopálenský V., Horváth O., Vortelová L., Feketová Z., Pospíšek M. Hepatitis C virus internal ribosome entry site initiates protein synthesis at the authentic initiation codon in yeast. J. Gen. Virol. 2007;88:1992–2002. PubMed

Mokrejš M., Vopálenský V., Kolenatý O., Mašek T., Feketová Z., Sekyrovà P., Skaloudová B., Kriz V., Pospíšek M. IRESite: The database of experimentally verified IRES structures ( www.iresite.org) Nucleic Acids Res. 2006. pp. D125–D130. PubMed PMC

Mokrejš M., Vopálenský V., Mašek T., Pospíšek M. Bioinformatical approach to the analysis of viral and cellular internal ribosome entry sites. In: Kwang L.B., editor. New messenger RNA research communications. Nova Science; Hauppauge, NY: 2007. pp. 133–166.

Rajkowitsch L., Vilela C., Berthelot K., Ramirez C.V., McCarthy J.E. Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast. J. Mol. Biol. 2004;335:71–85. PubMed

Rehwinkel J., Behm-Ansmant I., Gatfield D., Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA. 2005;11:1640–1647. PubMed PMC

Robinson K.A., Lopes J.M. The promoter of the yeast INO4 regulatory gene: A model of the simplest yeast promoter. J. Bacteriol. 2000;182:2746–2752. PubMed PMC

Rosfjord E., Lamb K., Rizzino A. Cryptic promoter activity within the backbone of a plasmid commonly used to prepare promoter/reporter gene constructs. In Vitro Cell. Dev. Biol. Anim. 1994;30A:477–481. PubMed

Van Eden M.E., Byrd M.P., Sherrill K.W., Lloyd R.E. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA. 2004;10:720–730. PubMed PMC

Wu M.T., Wu R.H., Hung C.F., Cheng T.L., Tsai W.H., Chang W.T. Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem. Biophys. Res. Commun. 2005;330:53–59. PubMed

Yi R., Qin Y., Macara I.G., Cullen B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Dev. 2003;17:3011–3016. PubMed PMC

Zeng Y., Cullen B.R. Sequence requirements for micro RNA processing and function in human cells. RNA. 2003;9:112–123. PubMed PMC

Zeng Y., Yi R., Cullen B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. 2003;100:9779–9784. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...