Firefly luciferase gene contains a cryptic promoter
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18697919
PubMed Central
PMC2525954
DOI
10.1261/rna.831808
PII: rna.831808
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- genetická transkripce * MeSH
- Hepacivirus genetika MeSH
- komplementární DNA genetika MeSH
- lidé MeSH
- luciferasy světlušek genetika MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplementární DNA MeSH
- luciferasy světlušek MeSH
A firefly luciferase (FLuc) counts among the most popular reporters of present-day molecular and cellular biology. In this study, we report a cryptic promoter activity in the luc+ gene, which is the most frequently used version of the firefly luciferase. The FLuc coding region displays cryptic promoter activity both in mammalian and yeast cells. In human CCL13 and Huh7 cells, cryptic transcription from the luc+ gene is 10-16 times weaker in comparison to the strong immediate-early cytomegalovirus promoter. Additionally, we discuss a possible impact of the FLuc gene cryptic promoter on experimental results especially in some fields of the RNA-oriented research, for example, in analysis of translation initiation or analysis of miRNA/siRNA function. Specifically, we propose how this newly described cryptic promoter activity within the FLuc gene might contribute to the previous determination of the strength of the cryptic promoter found in the cDNA corresponding to the hepatitis C virus internal ribosome entry site. Our findings should appeal to the researchers to be more careful when designing firefly luciferase-based assays as well as open the possibility of performing some experiments with the hepatitis C virus internal ribosome entry site, which could not be considered until now.
Zobrazit více v PubMed
Baird S.D., Turcotte M., Korneluk R.G., Holcik M. Searching for IRES. RNA. 2006;12:1755–1785. PubMed PMC
Boshart M., Kluppel M., Schmidt A., Schutz G., Luckow B. Reporter constructs with low background activity utilizing the cat gene. Gene. 1992;110:129–130. PubMed
Boutla A., Delidakis C., Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res. 2003;31:4973–4980. PubMed PMC
Calvin S., Wang J., Emch J., Pitz S., Jacobsen L. FuGENE® HD transfection reagent: Choice of a transfection reagent with minimal off-target effect as analyzed by microarray transcriptional profiling. Biochemica. 2006;4:22–25.
Cheng A.M., Byrom M.W., Shelton J., Ford L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–1297. PubMed PMC
de Wet J.R., Wood K.V., DeLuca M., Helinski D.R., Subramani S. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 1987;7:725–737. PubMed PMC
Dumas E., Staedel C., Colombat M., Reigadas S., Chabas S., Astier-Gin T., Cahour A., Litvak S., Ventura M. A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res. 2003;31:1275–1281. PubMed PMC
ENCODE Project Consortium. Birney E., Stamatoyannopoulos J.A., Dutta A., Guigó R., Gingeras T.R., Margulies E.H., Weng Z., Snyder M., Dermitzakis E.T., et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. PubMed PMC
Giannakis G., Edmondson S.R., Favaloro J.M., Zajac J.D., Greenland K.J. Aberrant cryptic responsiveness of the pCAT 3- and pGL3-promoter reporter vectors. Biotechniques. 2003;35:332–339. PubMed
Greally J.M. Genomics: Encyclopaedia of humble DNA. Nature. 2007;447:782–783. PubMed
Groskreutz D.J., Sherf B.A., Wood K.V., Schenborn E.T. Increased expression and convenience with the new pGL3 luciferase reporter vectors. Promega Notes. 1995;50:2–6.
Hall M.C., Young D.A., Rowan A.D., Edwards D.R., Clark I.M. Cryptic promoter activity of pBLCAT3 induced by overexpression of AP1 factors. Biotechniques. 2002;33:1004–1008. PubMed
Hecht K., Bailey J.E., Minas W. Polycistronic gene expression in yeast versus cryptic promoter elements. FEMS Yeast Res. 2002;2:215–224. PubMed
Hellen C.U., Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Dev. 2001;15:1593–1612. PubMed
Hennecke M., Kwissa M., Metzger K., Oumard A., Kroger A., Schirmbeck R., Reimann J., Hauser H. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res. 2001;29:3327–3334. PubMed PMC
Holcik M., Graber T., Lewis S.M., Lefebvre C.A., Lacasse E., Baird S. Spurious splicing within the XIAP 5′ UTR occurs in the Rluc/Fluc but not the βgal/CAT bicistronic reporter system. RNA. 2005;11:1605–1609. PubMed PMC
James P., Halladay J., Craig E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144:1425–1436. PubMed PMC
Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene. 2003;318:1–23. PubMed
Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res. 2005;33:6593–6602. PubMed PMC
Kozak M. Lessons (not) learned from mistakes about translation. Gene. 2007;403:194–203. PubMed
Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. 2007;104:9667–9672. PubMed PMC
Makelainen K.J., Makinen K. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Gene. 2007;391:275–284. PubMed
Martin M.M., Lee E.J., Buckenberger J.A., Schmittgen T.D., Elton T.S. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 2006;281:18277–18284. PubMed
Martin M.M., Buckenberger J.A., Jiang J., Malana G.E., Nuovo G.J., Chotani M., Feldman D.S., Schmittgen T.D., Elton T.S. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J. Biol. Chem. 2007;282:24262–24269. PubMed PMC
Mašek T., Vopálenský V., Suchomelová P., Pospíšek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 2005;336:46–50. PubMed
Mašek T., Vopálenský V., Horváth O., Vortelová L., Feketová Z., Pospíšek M. Hepatitis C virus internal ribosome entry site initiates protein synthesis at the authentic initiation codon in yeast. J. Gen. Virol. 2007;88:1992–2002. PubMed
Mokrejš M., Vopálenský V., Kolenatý O., Mašek T., Feketová Z., Sekyrovà P., Skaloudová B., Kriz V., Pospíšek M. IRESite: The database of experimentally verified IRES structures ( www.iresite.org) Nucleic Acids Res. 2006. pp. D125–D130. PubMed PMC
Mokrejš M., Vopálenský V., Mašek T., Pospíšek M. Bioinformatical approach to the analysis of viral and cellular internal ribosome entry sites. In: Kwang L.B., editor. New messenger RNA research communications. Nova Science; Hauppauge, NY: 2007. pp. 133–166.
Rajkowitsch L., Vilela C., Berthelot K., Ramirez C.V., McCarthy J.E. Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast. J. Mol. Biol. 2004;335:71–85. PubMed
Rehwinkel J., Behm-Ansmant I., Gatfield D., Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA. 2005;11:1640–1647. PubMed PMC
Robinson K.A., Lopes J.M. The promoter of the yeast INO4 regulatory gene: A model of the simplest yeast promoter. J. Bacteriol. 2000;182:2746–2752. PubMed PMC
Rosfjord E., Lamb K., Rizzino A. Cryptic promoter activity within the backbone of a plasmid commonly used to prepare promoter/reporter gene constructs. In Vitro Cell. Dev. Biol. Anim. 1994;30A:477–481. PubMed
Van Eden M.E., Byrd M.P., Sherrill K.W., Lloyd R.E. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA. 2004;10:720–730. PubMed PMC
Wu M.T., Wu R.H., Hung C.F., Cheng T.L., Tsai W.H., Chang W.T. Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem. Biophys. Res. Commun. 2005;330:53–59. PubMed
Yi R., Qin Y., Macara I.G., Cullen B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Dev. 2003;17:3011–3016. PubMed PMC
Zeng Y., Cullen B.R. Sequence requirements for micro RNA processing and function in human cells. RNA. 2003;9:112–123. PubMed PMC
Zeng Y., Yi R., Cullen B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. 2003;100:9779–9784. PubMed PMC