Characterization of Hepatitis C Virus IRES Quasispecies - From the Individual to the Pool
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29740402
PubMed Central
PMC5928756
DOI
10.3389/fmicb.2018.00731
Knihovny.cz E-zdroje
- Klíčová slova
- DGGE, DsRed2, EGFP, HCV, IRES, flow cytometry, hepatitis C virus, quasispecies,
- Publikační typ
- časopisecké články MeSH
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus from the genus Hepacivirus. The viral genomic +RNA is 9.6 kb long and contains highly structured 5' and 3' untranslated regions (UTRs) and codes for a single large polyprotein, which is co- and post-translationally processed by viral and cellular proteases into at least 11 different polypeptides. Most of the 5' UTR and an initial part of the polyprotein gene are occupied by an internal ribosome entry site (IRES), which mediates cap-independent translation of the viral proteins and allows the virus to overcome cellular antiviral defense based on the overall reduction of the cap-dependent translation initiation. We reconsidered published results concerning a search for possible correlation between patient response to interferon-based antiviral therapy and accumulation of nucleotide changes within the HCV IRES. However, we were unable to identify any such correlation. Rather than searching for individual mutations, we suggest to focus on determination of individual and collective activities of the HCV IRESs found in patient specimens. We developed a combined, fast, and undemanding approach based on high-throughput cloning of the HCV IRES species to a bicistronic plasmid followed by determination of the HCV IRES activity by flow cytometry. This approach can be adjusted for measurement of the individual HCV IRES activity and for estimation of the aggregate ability of the whole HCV population present in the specimen to synthesize viral proteins. To detect nucleotide variations in the individual IRESs, we used denaturing gradient gel electrophoresis (DGGE) analysis that greatly improved identification and classification of HCV IRES variants in the sample. We suggest that determination of the collective activity of the majority of HCV IRES variants present in one patient specimen in a given time represents possible functional relations among variant sequences within the complex population of viral quasispecies better than bare information about their nucleotide sequences. A similar approach might be used for monitoring of sequence variations in quasispecies populations of other RNA viruses in all cases when changes in primary sequence represent changes in measurable and easily quantifiable phenotypes.
Clinic of Infectious Medicine University Hospital Ostrava Ostrava Czechia
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Bartenschlager R., Lohmann V., Penin F. (2013). The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 11 482–496. 10.1038/nrmicro3046 PubMed DOI
Brown E. A., Zhang H., Ping L. H., Lemon S. M. (1992). Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20 5041–5045. 10.1093/nar/20.19.5041 PubMed DOI PMC
Bukh J. (2016). The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J. Hepatol. 65(1 Suppl), S2–S21. 10.1016/j.jhep.2016.07.035 PubMed DOI
Cabot B., Esteban J. I., Martell M., Genesca J., Vargas V., Esteban R., et al. (1997). Structure of replicating hepatitis C virus (HCV) quasispecies in the liver may not be reflected by analysis of circulating HCV virions. J. Virol. 71 1732–1734. PubMed PMC
Chen Z. W., Li H., Ren H., Hu P. (2016). Global prevalence of pre-existing HCV variants resistant to direct-acting antiviral agents (DAAs): mining the GenBank HCV genome data. Sci. Rep. 6:20310. 10.1038/srep20310 PubMed DOI PMC
Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244 359–362. 10.1126/science.2523562 PubMed DOI
Choo Q. L., Richman K. H., Han J. H., Berger K., Lee C., Dong C., et al. (1991). Genetic organization and diversity of the hepatitis C virus. Proc. Natl. Acad. Sci. U.S.A. 88 2451–2455. 10.1073/pnas.88.6.2451 PubMed DOI PMC
Domingo E., Gomez J. (2007). Quasispecies and its impact on viral hepatitis. Virus Res. 127 131–150. 10.1016/j.virusres.2007.02.001 PubMed DOI PMC
Douam F., Ding Q., Ploss A. (2016). Recent advances in understanding hepatitis C. F1000Res 5:F1000. 10.12688/f1000research.7354.1 PubMed DOI PMC
Dustin L. B., Bartolini B., Capobianchi M. R., Pistello M. (2016). Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin. Microbiol. Infect. 22 826–832. 10.1016/j.cmi.2016.08.025 PubMed DOI PMC
Echeverria N., Moratorio G., Cristina J., Moreno P. (2015). Hepatitis C virus genetic variability and evolution. World J. Hepatol. 7 831–845. 10.4254/wjh.v7.i6.831 PubMed DOI PMC
El Awady M. K., Azzazy H. M., Fahmy A. M., Shawky S. M., Badreldin N. G., Yossef S. S., et al. (2009). Positional effect of mutations in 5′UTR of hepatitis C virus 4a on patients’ response to therapy. World J. Gastroenterol. 15 1480–1486. 10.3748/wjg.15.1480 PubMed DOI PMC
Floden E. W., Khawaja A., Vopalensky V., Pospisek M. (2016). HCVIVdb: The hepatitis-C IRES variation database. BMC Microbiol. 16:187. 10.1186/s12866-016-0804-6 PubMed DOI PMC
Gravitz L. (2011). Introduction: a smouldering public-health crisis. Nature 474 S2–S4. 10.1038/474S2a PubMed DOI
Holmes D. S., Quigley M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114 193–197. 10.1016/0003-2697(81)90473-5 PubMed DOI
Jimenez-Perez M., Gonzalez-Grande R., Espana Contreras P., Pinazo Martinez I., de la Cruz Lombardo J., Olmedo Martin R. (2016). Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance. World J. Gastroenterol. 22 6573–6581. 10.3748/wjg.v22.i29.6573 PubMed DOI PMC
Khawaja A., Vopalensky V., Pospisek M. (2015). Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. Wiley Interdiscip. Rev. RNA 6 211–224. 10.1002/wrna.1268 PubMed DOI PMC
Laporte J., Malet I., Andrieu T., Thibault V., Toulme J. J., Wychowski C., et al. (2000). Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type. J. Virol. 74 10827–10833. 10.1128/JVI.74.22.10827-10833.2000 PubMed DOI PMC
Lavanchy D. (2011). Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 17 107–115. 10.1111/j.1469-0691.2010.03432.x PubMed DOI
Li Y., Yamane D., Masaki T., Lemon S. M. (2015). The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat. Rev. Microbiol. 13 544–558. 10.1038/nrmicro3506 PubMed DOI PMC
Lozano G., Martinez-Salas E. (2015). Structural insights into viral IRES-dependent translation mechanisms. Curr. Opin. Virol. 12 113–120. 10.1016/j.coviro.2015.04.008 PubMed DOI
Lu M., Wiese M., Roggendorf M. (1999). Selection of genetic variants of the 5′ noncoding region of hepatitis C virus occurs only in patients responding to interferon alpha therapy. J. Med. Virol. 59 146–153. 10.1002/(SICI)1096-9071(199910)59:2<146::AID-JMV4>3.0.CO;2-O PubMed DOI
Martell M., Esteban J. I., Quer J., Genesca J., Weiner A., Esteban R., et al. (1992). Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J. Virol. 66 3225–3229. PubMed PMC
Masek T., Vopalensky V., Horvath O., Vortelova L., Feketova Z., Pospisek M. (2007). Hepatitis C virus internal ribosome entry site initiates protein synthesis at the authentic initiation codon in yeast. J. Gen. Virol. 88(Pt 7), 1992–2002. 10.1099/vir.0.82782-0 PubMed DOI
Niepmann M. (2013). Hepatitis C virus RNA translation. Curr. Top. Microbiol. Immunol. 369 143–166. 10.1007/978-3-642-27340-7_6 PubMed DOI
Ogata K., Kashiwagi T., Iwahashi J., Hara K., Honda H., Ide T., et al. (2008). A mutational shift from domain III to II in the internal ribosome entry site of hepatitis C virus after interferon-ribavirin therapy. Arch. Virol. 153 1575–1579. 10.1007/s00705-008-0143-5 PubMed DOI
Ohmer S., Honegger J. (2016). New prospects for the treatment and prevention of hepatitis C in children. Curr. Opin. Pediatr. 28 93–100. 10.1097/MOP.0000000000000313 PubMed DOI PMC
Pawlotsky J. M. (2006). Hepatitis C virus population dynamics during infection. Curr. Top. Microbiol. Immunol. 299 261–284. 10.1007/3-540-26397-7_9 PubMed DOI
Saiz J. C., Lopez de Quinto S., Ibarrola N., Lopez-Labrador F. X., Sanchez-Tapias J. M., Rodes J., et al. (1999). Internal initiation of translation efficiency in different hepatitis C genotypes isolated from interferon treated patients. Arch. Virol. 144 215–229. 10.1007/s007050050499 PubMed DOI
Sarrazin C. (2016). The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 64 486–504. 10.1016/j.jhep.2015.09.011 PubMed DOI
Simmonds P. (2004). Genetic diversity and evolution of hepatitis C virus–15 years on. J. Gen. Virol. 85(Pt 11), 3173–3188. 10.1099/vir.0.80401-0 PubMed DOI
Sizova D. V., Kolupaeva V. G., Pestova T. V., Shatsky I. N., Hellen C. U. (1998). Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72 4775–4782. PubMed PMC
Smith D. B., Pathirana S., Davidson F., Lawlor E., Power J., Yap P. L., et al. (1997). The origin of hepatitis C virus genotypes. J. Gen. Virol. 78(Pt 2), 321–328. 10.1099/0022-1317-78-2-321 PubMed DOI
Soler M., Pellerin M., Malnou C. E., Dhumeaux D., Kean K. M., Pawlotsky J. M. (2002). Quasispecies heterogeneity and constraints on the evolution of the 5′ noncoding region of hepatitis C virus (HCV): relationship with HCV resistance to interferon-alpha therapy. Virology 298 160–173. 10.1006/viro.2002.1494 PubMed DOI
Song Y., Friebe P., Tzima E., Junemann C., Bartenschlager R., Niepmann M. (2006). The hepatitis C virus RNA 3′-untranslated region strongly enhances translation directed by the internal ribosome entry site. J. Virol. 80 11579–11588. 10.1128/JVI.00675-06 PubMed DOI PMC
Tang L., Marcell L., Kottilil S. (2016). Systemic manifestations of hepatitis C infection. Infect. Agent Cancer 11:29. 10.1186/s13027-016-0076-7 PubMed DOI PMC
Thelu M. A., Drouet E., Hilleret M. N., Zarski J. P. (2004). Lack of clinical significance of variability in the internal ribosome entry site of hepatitis C virus. J. Med. Virol. 72 396–405. 10.1002/jmv.20021 PubMed DOI
Thelu M. A., Leroy V., Ramzan M., Dufeu-Duchesne T., Marche P., Zarski J. P. (2007). IRES complexity before IFN-alpha treatment and evolution of the viral load at the early stage of treatment in peripheral blood mononuclear cells from chronic hepatitis C patients. J. Med. Virol. 79 242–253. 10.1002/jmv.20792 PubMed DOI
Vopalensky V., Masek T., Horvath O., Vicenova B., Mokrejs M., Pospisek M. (2008). Firefly luciferase gene contains a cryptic promoter. RNA 14 1720–1729. 10.1261/rna.831808 PubMed DOI PMC
Walsh N., Durier N., Khwairakpam G., Sohn A. H., Lo Y. R. (2015). The hepatitis C treatment revolution: how to avoid Asia missing out. J. Virus Erad. 1 272–275. PubMed PMC
Wang C., Sarnow P., Siddiqui A. (1993). Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 67 3338–3344. PubMed PMC
Yamamoto C., Enomoto N., Kurosaki M., Yu S. H., Tazawa J., Izumi N., et al. (1997). Nucleotide sequence variations in the internal ribosome entry site of hepatitis C virus-1b: no association with efficacy of interferon therapy or serum HCV-RNA levels. Hepatology 26 1616–1620. 10.1002/hep.510260633 PubMed DOI
Yasmeen A., Hamid S., Granath F. N., Lindstrom H., Elliott R. M., Siddiqui A. A., et al. (2006). Correlation between translation efficiency and outcome of combination therapy in chronic hepatitis C genotype 3. J. Viral. Hepat. 13 87–95. 10.1111/j.1365-2893.2005.00660.x PubMed DOI