Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Large-scale pancreatic cancer detection via non-contrast CT and deep learning

K. Cao, Y. Xia, J. Yao, X. Han, L. Lambert, T. Zhang, W. Tang, G. Jin, H. Jiang, X. Fang, I. Nogues, X. Li, W. Guo, Y. Wang, W. Fang, M. Qiu, Y. Hou, T. Kovarnik, M. Vocka, Y. Lu, Y. Chen, X. Chen, Z. Liu, J. Zhou, C. Xie, R. Zhang, H. Lu, GD....

. 2023 ; 29 (12) : 3033-3043. [pub] 20231120

Jazyk angličtina Země Spojené státy americké

Typ dokumentu multicentrická studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24000348

Grantová podpora
82372045 National Natural Science Foundation of China (National Science Foundation of China)

E-zdroje Online Plný text

NLK ProQuest Central od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.

Damo Academy Alibaba Group Hangzhou China

DAMO Academy Alibaba Group New York NY USA

Department of Biostatistics Harvard University T H Chan School of Public Health Cambridge MA USA

Department of Computer Science Johns Hopkins University Baltimore MD USA

Department of Hepatobiliary and Pancreatic Surgery 1st Affiliated Hospital of Zhejiang University Hangzhou China

Department of Invasive Cardiology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Oncology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Pathology Shanghai Institution of Pancreatic Disease Shanghai China

Department of Radiology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Radiology Fudan University Shanghai Cancer Center Shanghai China

Department of Radiology Guangdong Provincial People's Hospital Guangzhou China

Department of Radiology Shanghai Institution of Pancreatic Disease Shanghai China

Department of Radiology Shengjing Hospital of China Medical University Shenyang China

Department of Radiology Sun Yat Sen University Cancer Center Guangzhou China

Department of Radiology Tianjin Medical University Cancer Institute and Hospital Tianjin China

Department of Radiology Xinhua Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Department of Surgery Shanghai Institution of Pancreatic Disease Shanghai China

Hupan Laboratory Hangzhou China

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24000348
003      
CZ-PrNML
005      
20240213093125.0
007      
ta
008      
240109s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41591-023-02640-w $2 doi
035    __
$a (PubMed)37985692
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cao, Kai $u Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
245    10
$a Large-scale pancreatic cancer detection via non-contrast CT and deep learning / $c K. Cao, Y. Xia, J. Yao, X. Han, L. Lambert, T. Zhang, W. Tang, G. Jin, H. Jiang, X. Fang, I. Nogues, X. Li, W. Guo, Y. Wang, W. Fang, M. Qiu, Y. Hou, T. Kovarnik, M. Vocka, Y. Lu, Y. Chen, X. Chen, Z. Liu, J. Zhou, C. Xie, R. Zhang, H. Lu, GD. Hager, AL. Yuille, L. Lu, C. Shao, Y. Shi, Q. Zhang, T. Liang, L. Zhang, J. Lu
520    9_
$a Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
650    _2
$a lidé $7 D006801
650    _2
$a umělá inteligence $7 D001185
650    12
$a deep learning $7 D000077321
650    12
$a nádory slinivky břišní $x diagnostické zobrazování $x patologie $7 D010190
650    _2
$a počítačová rentgenová tomografie $7 D014057
650    _2
$a pankreas $x diagnostické zobrazování $x patologie $7 D010179
650    12
$a duktální karcinom slinivky břišní $x diagnostické zobrazování $x patologie $7 D021441
650    _2
$a retrospektivní studie $7 D012189
655    _2
$a multicentrická studie $7 D016448
655    _2
$a časopisecké články $7 D016428
700    1_
$a Xia, Yingda $u DAMO Academy, Alibaba Group, New York, NY, USA $1 https://orcid.org/0000000274784392
700    1_
$a Yao, Jiawen $u Hupan Laboratory, Hangzhou, China $u Damo Academy, Alibaba Group, Hangzhou, China $1 https://orcid.org/0000000174292964
700    1_
$a Han, Xu $u Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
700    1_
$a Lambert, Lukas $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Zhang, Tingting $u Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
700    1_
$a Tang, Wei $u Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
700    1_
$a Jin, Gang $u Department of Surgery, Shanghai Institution of Pancreatic Disease, Shanghai, China
700    1_
$a Jiang, Hui $u Department of Pathology, Shanghai Institution of Pancreatic Disease, Shanghai, China
700    1_
$a Fang, Xu $u Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
700    1_
$a Nogues, Isabella $u Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Cambridge, MA, USA
700    1_
$a Li, Xuezhou $u Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
700    1_
$a Guo, Wenchao $u Hupan Laboratory, Hangzhou, China $u Damo Academy, Alibaba Group, Hangzhou, China $1 https://orcid.org/0000000204451859
700    1_
$a Wang, Yu $u Hupan Laboratory, Hangzhou, China $u Damo Academy, Alibaba Group, Hangzhou, China
700    1_
$a Fang, Wei $u Hupan Laboratory, Hangzhou, China $u Damo Academy, Alibaba Group, Hangzhou, China
700    1_
$a Qiu, Mingyan $u Hupan Laboratory, Hangzhou, China $u Damo Academy, Alibaba Group, Hangzhou, China
700    1_
$a Hou, Yang $u Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
700    1_
$a Kovarnik, Tomas $u Department of Invasive Cardiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Vocka, Michal $u Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $1 https://orcid.org/000000029386657X $7 xx0181880
700    1_
$a Lu, Yimei $u Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
700    1_
$a Chen, Yingli $u Department of Surgery, Shanghai Institution of Pancreatic Disease, Shanghai, China
700    1_
$a Chen, Xin $u Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, China
700    1_
$a Liu, Zaiyi $u Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, China
700    1_
$a Zhou, Jian $u Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China $1 https://orcid.org/0000000268689866
700    1_
$a Xie, Chuanmiao $u Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
700    1_
$a Zhang, Rong $u Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
700    1_
$a Lu, Hong $u Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
700    1_
$a Hager, Gregory D $u Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA $1 https://orcid.org/0000000266629763
700    1_
$a Yuille, Alan L $u Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
700    1_
$a Lu, Le $u DAMO Academy, Alibaba Group, New York, NY, USA $1 https://orcid.org/0000000267999416
700    1_
$a Shao, Chengwei $u Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China. cwshao@sina.com $1 https://orcid.org/0000000293041252
700    1_
$a Shi, Yu $u Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China. 18940259980@163.com $1 https://orcid.org/0000000319400074
700    1_
$a Zhang, Qi $u Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China. qi.zhang@zju.edu.cn $1 https://orcid.org/0000000260960690
700    1_
$a Liang, Tingbo $u Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China. liangtingbo@zju.edu.cn $1 https://orcid.org/0000000301433353
700    1_
$a Zhang, Ling $u DAMO Academy, Alibaba Group, New York, NY, USA. ling.z@alibaba-inc.com $1 https://orcid.org/0000000183715252
700    1_
$a Lu, Jianping $u Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China. cjr.lujianping@vip.163.com $1 https://orcid.org/0000000203807470
773    0_
$w MED00003459 $t Nature medicine $x 1546-170X $g Roč. 29, č. 12 (2023), s. 3033-3043
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37985692 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240109 $b ABA008
991    __
$a 20240213093122 $b ABA008
999    __
$a ok $b bmc $g 2049173 $s 1210042
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 29 $c 12 $d 3033-3043 $e 20231120 $i 1546-170X $m Nature medicine $n Nat Med $x MED00003459
GRA    __
$a 82372045 $p National Natural Science Foundation of China (National Science Foundation of China)
LZP    __
$a Pubmed-20240109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...