Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications

. 2021 Nov 09 ; 13 (22) : . [epub] 20211109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34833169

Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid-methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.

Zobrazit více v PubMed

Liu Y.-W., Zhan Q.-F., Li R.-W. Fabrication, properties, and applications of flexible magnetic films. Chin. Phys. B. 2013;22:127502. doi: 10.1088/1674-1056/22/12/127502. DOI

Safarik I., Pospiskova K., Horska K., Safarikova M. Potential of magnetically responsive (nano)biocomposites. Soft Matter. 2012;8:5407–5413. doi: 10.1039/c2sm06861c. DOI

Nawaz S., Rashid E.U., Bagheri A.R., Aramesh N., Bhatt P., Ali N., Nguyen T.A., Bilal M. Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. Chemosphere. 2021;276:130241. doi: 10.1016/j.chemosphere.2021.130241. PubMed DOI

Ali N., Zaman H., Bilal M., Shah A.-u.-H.A., Nazir M.S., Iqbal H.M.N. Environmental perspectives of interfacially active and magnetically recoverable composite materials—A review. Sci. Total Environ. 2019;670:523–538. doi: 10.1016/j.scitotenv.2019.03.209. PubMed DOI

Lalegül-Ülker Ö., Vurat M.T., Elçin A.E., Elçin Y.M. Magnetic silk fibroin composite nanofibers for biomedical applications: Fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J. Appl. Polym. Sci. 2019;136:48040. doi: 10.1002/app.48040. DOI

Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI

Melnikova L., Pospiskova K., Mitroova Z., Kopcansky P., Safarik I. Peroxidase-like activity of magnetoferritin. Microchim. Acta. 2014;181:295–301. doi: 10.1007/s00604-013-1105-5. DOI

Safarik I., Prochazkova J., Schroer M.A., Garamus V.M., Kopcansky P., Timko M., Rajnak M., Karpets M., Ivankov O.I., Avdeev M.V., et al. Cotton textile/iron oxide manozyme composites with peroxidase-like activity: Preparation, characterization, and application. ACS Appl. Mater. Interfaces. 2021;13:23627–23637. doi: 10.1021/acsami.1c02154. PubMed DOI

Safarik I., Pospiskova K., Horska K., Maderova Z., Safarikova M. Magnetically responsive (nano)biocomposites. In: Prokop A., Iwasaki Y., Harada A., editors. Intracellular Delivery. Volume 2. Springer; Berlin/Heidelberg, Germany: 2014. pp. 17–34.

Pospiskova K., Mohr G.J., Prochazkova J., Timko M., Rajnak M., Paulovicova K., Kopcansky P., Giovannini G., Boesel L.F., Safarik I. Scalable production of magnetic fluorescent cellulose microparticles. Cellulose. 2021;28:7675–7685. doi: 10.1007/s10570-021-04018-y. DOI

Safarik I., Prochazkova J., Baldikova E., Timko M., Kopcansky P., Rajnak M., Torma N., Pospiskova K. Modification of diamagnetic materials using magnetic fluids. Ukr. J. Phys. 2020;65:751. doi: 10.15407/ujpe65.9.751. DOI

Safarik I., Safarikova M. One-step magnetic modification of non-magnetic solid materials. Int. J. Mater. Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI

Pospiskova K., Safarik I. Low-temperature magnetic modification of sensitive biological materials. Mater. Lett. 2015;142:184–188. doi: 10.1016/j.matlet.2014.11.163. DOI

Padmakumar S., Paul-Prasanth B., Pavithran K., Vijaykumar D.K., Rajanbabu A., Sivanarayanan T.B., Kadakia E., Amiji M.M., Nair S.V., Menon D. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomed. Nanotechnol. Biol. Med. 2019;15:274–284. doi: 10.1016/j.nano.2018.10.002. PubMed DOI

Ignatova M., Rashkov I., Manolova N. Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opin. Drug Deliv. 2013;10:469–483. doi: 10.1517/17425247.2013.758103. PubMed DOI

Yu D.G., Yu J.H., Chen L., Williams G.R., Wang X. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr. Polym. 2012;90:1016–1023. doi: 10.1016/j.carbpol.2012.06.036. PubMed DOI

Zhu T., Chen S., Li W., Lou J., Wang J. Flurbiprofen axetil loaded coaxial electrospun poly(vinyl pyrrolidone)–nanopoly(lactic-co-glycolic acid) core–shell composite nanofibers: Preparation, characterization, and anti-adhesion activity. J. Appl. Polym. Sci. 2015;132:41982. doi: 10.1002/app.41982. DOI

Huang W., Zou T., Li S., Jing J., Xia X., Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech. 2013;14:675–681. doi: 10.1208/s12249-013-9953-1. PubMed DOI PMC

Bhattarai R.S., Bachu R.D., Boddu S.H.S., Bhaduri S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics. 2018;11:5. doi: 10.3390/pharmaceutics11010005. PubMed DOI PMC

Savva I., Odysseos A.D., Evaggelou L., Marinica O., Vasile E., Vekas L., Sarigiannis Y., Krasia-Christoforou T. Fabrication, characterization, and evaluation in drug release properties of magnetoactive poly(ethylene oxide)–poly(l-lactide) electrospun membranes. Biomacromolecules. 2013;14:4436–4446. doi: 10.1021/bm401363v. PubMed DOI

Molcan M., Safarik I., Pospiskova K., Paulovicova K., Timko M., Kopcansky P., Torma N. Magnetically modified electrospun nanofibers for hyperthermia treatment. Ukr. J. Phys. 2020;65:655. doi: 10.15407/ujpe65.8.655. DOI

Faridi-Majidi R., Sharifi-Sanjani N. In Situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. J. Appl. Polym. Sci. 2007;105:1351–1355. doi: 10.1002/app.26230. DOI

Prochazkova J., Pospiskova K., Safarik I. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. J. Magn. Magn. Mater. 2019;473:335–340. doi: 10.1016/j.jmmm.2018.10.106. DOI

Safarik I., Pospiskova K., Baldikova E., Savva I., Vekas L., Marinica O., Tanasa E., Krasia-Christoforou T. Fabrication and bioapplications of magnetically modified chitosan-based electrospun nanofibers. Electrospinning. 2018;2:29–39. doi: 10.1515/esp-2018-0003. DOI

Jia Y., Yang C., Chen X., Xue W., Hutchins-Crawford H.J., Yu Q., Topham P.D., Wang L. A review on electrospun magnetic nanomaterials: Methods, properties and applications. J. Mater. Chem. C. 2021;9:9042–9082. doi: 10.1039/D1TC01477C. DOI

Ortolani A., Bianchi M., Mosca M., Caravelli S., Fuiano M., Marcacci M., Russo A. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: A review. Joints. 2017;4:228–235. doi: 10.11138/jts/2016.4.4.228. PubMed DOI PMC

Nikolaou M., Avraam K., Kolokithas-Ntoukas A., Bakandritsos A., Lizal F., Misik O., Maly M., Jedelsky J., Savva I., Balanean F., et al. Superparamagnetic electrospun microrods for magnetically-guided pulmonary drug delivery with magnetic heating. Mater. Sci. Eng. C. 2021;126:112117. doi: 10.1016/j.msec.2021.112117. PubMed DOI

Chen S., Boda S.K., Batra S.K., Li X., Xie J. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater. 2018;7:e1701024. doi: 10.1002/adhm.201701024. PubMed DOI PMC

Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9:656. doi: 10.3390/nano9040656. PubMed DOI PMC

Matos A.M., Gonçalves A.I., Rodrigues M.T., Miranda M.S., Haj A.J.E., Reis R.L., Gomes M.E. Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomater. 2020;113:488–500. doi: 10.1016/j.actbio.2020.07.009. PubMed DOI

Gonçalves A.I., Rodrigues M.T., Carvalho P.P., Bañobre-López M., Paz E., Freitas P., Gomes M.E. Exploring the potential of starch/polycaprolactone aligned magnetic responsive ccaffolds for tendon regeneration. Adv. Healthc. Mater. 2016;5:213–222. doi: 10.1002/adhm.201500623. PubMed DOI

Hao S., Meng J., Zhang Y., Liu J., Nie X., Wu F., Yang Y., Wang C., Gu N., Xu H. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials. 2017;140:16–25. doi: 10.1016/j.biomaterials.2017.06.013. PubMed DOI

Shuai C., Yang W., He C., Peng S., Gao C., Yang Y., Qi F., Feng P. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater. Des. 2020;185:108275. doi: 10.1016/j.matdes.2019.108275. DOI

Sapir Y., Polyak B., Cohen S. Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology. 2014;25:014009. doi: 10.1088/0957-4484/25/1/014009. PubMed DOI PMC

Sapir Y., Cohen S., Friedman G., Polyak B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 2012;33:4100–4109. doi: 10.1016/j.biomaterials.2012.02.037. PubMed DOI PMC

Caizer C. Nanoparticle size effect on some magnetic properties. In: Aliofkhazraei M., editor. Handbook of Nanoparticles. Springer International Publishing; Cham, Switzerland: 2016. pp. 475–519.

Sagare R.D. Halloysite nanotubes: Design, characterization and applications. A review. Farmacia. 2021;69:208–214. doi: 10.31925/farmacia.2021.2.3. DOI

Feldman D. Polymer nanocomposites in medicine. J. Macromol. Sci. Part A. 2016;53:55–62. doi: 10.1080/10601325.2016.1110459. DOI

Kalia S., Kango S., Kumar A., Haldorai Y., Kumari B., Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014;292:2025–2052. doi: 10.1007/s00396-014-3357-y. DOI

Abdullayev E., Lvov Y. Chapter 22—Halloysite for controllable loading and release. In: Yuan P., Thill A., Bergaya F., editors. Developments in Clay Science. Volume 7. Elsevier; Amsterdam, The Netherlands: 2016. pp. 554–605.

Steele L., Margolis G., Cohen S., Polyak B. Smart Materials for Tissue Engineering: Applications. The Royal Society of Chemistry; London, UK: 2017. Chapter 11: Applications of magnetic-responsive materials for cardiovascular tissue engineering; pp. 290–328.

Riela G.S., Fakhrullin R.F. Clay-based drug-delivery systems: What does the future hold? Ther. Deliv. 2017;8:633–646. doi: 10.4155/tde-2017-0041. PubMed DOI

Yendluri R., Lvov Y., de Villiers M.M., Vinokurov V., Naumenko E., Tarasova E., Fakhrullin R. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J. Pharm. Sci. 2017;106:3131–3139. doi: 10.1016/j.xphs.2017.05.034. PubMed DOI

Satish S., Tharmavaram M., Rawtani D. Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine. 2019;6:1–16. doi: 10.1177/1849543519863625. PubMed DOI PMC

Prinz Setter O., Segal E. Halloysite nanotubes—The nano-bio interface. Nanoscale. 2020;12:23444–23460. doi: 10.1039/D0NR06820A. PubMed DOI

Kushwaha S.K., Kushwaha N., Pandey P., Fatma B. Halloysite nanotubes for nanomedicine: Prospects, challenges and applications. BioNanoScience. 2021;11:200–208. doi: 10.1007/s12668-020-00801-6. DOI

Kausar A. Review on polymer/halloysite nanotube nanocomposite. Polym.-Plast. Technol. Eng. 2018;57:548–564. doi: 10.1080/03602559.2017.1329436. DOI

Safarik I., Baldikova E., Prochazkova J., Safarikova M., Pospiskova K. Magnetically modified agricultural and food waste: Preparation and application. J. Agric. Food Chem. 2018;66:2538–2552. doi: 10.1021/acs.jafc.7b06105. PubMed DOI

Janacek D., Kvitek L., Karlikova M., Pospiskova K., Safarik I. Removal of silver nanoparticles with native and magnetically modified halloysite. Appl. Clay Sci. 2018;162:10–14. doi: 10.1016/j.clay.2018.05.024. DOI

Khunová V., Šafařík I., Škrátek M., Kelnar I., Tomanová K. Biodegradable polymer nanocomposites based on natural nanotubes: Effect of magnetically modified halloysite on the behaviour of polycaprolactone. Clay Miner. 2018;51:435–444. doi: 10.1180/claymin.2016.051.3.05. DOI

Khunová V., Pavliňáková V., Škrátek M., Šafařík I., Pavliňák D. Magnetic halloysite reinforced biodegradable nanofibres: New challenge for medical applications. AIP Conf. Proc. 2018;1981:020074. doi: 10.1063/1.5045936. DOI

Türkeş E., Sağ Açıkel Y. Synthesis and characterization of magnetic halloysite–chitosan nanocomposites: Use in the removal of methylene blue in wastewaters. Int. J. Environ. Sci. Technol. 2020;17:1281–1294. doi: 10.1007/s13762-019-02550-w. DOI

Maleki A., Hajizadeh Z., Firouzi-Haji R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 2018;259:46–53. doi: 10.1016/j.micromeso.2017.09.034. DOI

Hamza H., Ferretti A.M., Innocenti C., Fidecka K., Licandro E., Sangregorio C., Maggioni D. An approach for magnetic halloysite nanocomposite with selective loading of superparamagnetic magnetite nanoparticles in the lumen. Inorg. Chem. 2020;59:12086–12096. doi: 10.1021/acs.inorgchem.0c01039. PubMed DOI PMC

Xie Y., Qian D., Wu D., Ma X. Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem. Eng. J. 2011;168:959–963. doi: 10.1016/j.cej.2011.02.031. DOI

Rihova M., Ince A.E., Cicmancova V., Hromadko L., Castkova K., Pavlinak D., Vojtova L., Macak J.M. Water-born 3D nanofiber mats using cost-effective centrifugal spinning: Comparison with electrospinning process: A complex study. J. Appl. Polym. Sci. 2021;138:49975. doi: 10.1002/app.49975. DOI

Calisir M.D., Kilic A. A comparative study on SiO2 nanofiber production via two novel non-electrospinning methods: Centrifugal spinning vs solution blowing. Mater. Lett. 2020;258:126751. doi: 10.1016/j.matlet.2019.126751. DOI

Heseltine P.L., Ahmed J., Edirisinghe M. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol. Mater. Eng. 2018;303:1800218. doi: 10.1002/mame.201800218. DOI

Hassan M.A., Yeom B.Y., Wilkie A., Pourdeyhimi B., Khan S.A. Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 2013;427:336–344. doi: 10.1016/j.memsci.2012.09.050. DOI

Mahalingam S., Matharu R., Homer-Vanniasinkam S., Edirisinghe M. Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl. Phys. Rev. 2020;7:041302. doi: 10.1063/5.0008310. DOI

Yu M., Dong R.-H., Yan X., Yu G.-F., You M.-H., Ning X., Long Y.-Z. Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production. Macromol. Mater. Eng. 2017;302:1700002. doi: 10.1002/mame.201700002. DOI

Persano L., Camposeo A., Tekmen C., Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol. Mater. Eng. 2013;298:504–520. doi: 10.1002/mame.201200290. DOI

Pavliňáková V., Fohlerová Z., Pavliňák D., Khunová V., Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater. Sci. Eng. C. 2018;91:94–102. doi: 10.1016/j.msec.2018.05.033. PubMed DOI

Safarik I., Lunackova P., Mosiniewicz-Szablewska E., Weyda F., Safarikova M. Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung. 2007;61:247–253. doi: 10.1515/HF.2007.060. DOI

Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981;17:1247–1248. doi: 10.1109/TMAG.1981.1061188. DOI

Kiwada H., Sato J., Yamada S., Kato Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. 1986;34:4253–4258. doi: 10.1248/cpb.34.4253. PubMed DOI

Luo P., Zhao Y., Zhang B., Liu J., Yang Y., Liu J. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010;44:1489–1497. doi: 10.1016/j.watres.2009.10.042. PubMed DOI

Jancar J., Ondreas F., Lepcio P., Zboncak M., Zarybnicka K. Mechanical properties of glassy polymers with controlled NP spatial organization. Polym. Test. 2020;90:106640. doi: 10.1016/j.polymertesting.2020.106640. DOI

Dorigato A., D’Amato M., Pegoretti A. Thermo-mechanical properties of high density polyethylene—Fumed silica nanocomposites: Effect of filler surface area and treatment. J. Polym. Res. 2012;19:9889. doi: 10.1007/s10965-012-9889-2. DOI

Fu S., Sun Z., Huang P., Li Y., Hu N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019;1:2–30. doi: 10.1016/j.nanoms.2019.02.006. DOI

Ondreas F., Lepcio P., Zboncak M., Zarybnicka K., Govaert L.E., Jancar J. Effect of nanoparticle organization on molecular mobility and mechanical properties of polymer nanocomposites. Macromolecules. 2019;52:6250–6259. doi: 10.1021/acs.macromol.9b01197. DOI

Zarybnicka K., Ondreas F., Lepcio P., Kalina M., Zboncak M., Jancar J. Thermodynamic parameters controlling nanoparticle spatial packing in polymer solutions. Macromolecules. 2020;53:8704–8713. doi: 10.1021/acs.macromol.0c00698. DOI

Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Caha O., Jancar J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: The origin and properties of aggregates and polymer bound clusters. Soft Matter. 2018;14:2094–2103. doi: 10.1039/C8SM00150B. PubMed DOI

Zboncak M., Ondreas F., Uhlir V., Lepcio P., Michalicka J., Jancar J. Translation of segment scale stiffening into macroscale reinforcement in polymer nanocomposites. Polym. Eng. Sci. 2020;60:587–596. doi: 10.1002/pen.25317. DOI

Jancar J., Douglas J.F., Starr F.W., Kumar S.K., Cassagnau P., Lesser A.J., Sternstein S.S., Buehler M.J. Current issues in research on structure–property relationships in polymer nanocomposites. Polymer. 2010;51:3321–3343. doi: 10.1016/j.polymer.2010.04.074. DOI

Lepcio P., Ondreáš F., Zárybnická K., Zbončák M., Svatík J., Jančář J. Phase diagram of bare particles in polymer nanocomposites: Uniting solution and melt blending. Polymer. 2021;230:124033. doi: 10.1016/j.polymer.2021.124033. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...