Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34833169
PubMed Central
PMC8624944
DOI
10.3390/polym13223870
PII: polym13223870
Knihovny.cz E-zdroje
- Klíčová slova
- biopolymer, electrospinning, gelatine, halloysite, magnetic, nanofibers, nanotubes, polycaprolactone,
- Publikační typ
- časopisecké články MeSH
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid-methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Zobrazit více v PubMed
Liu Y.-W., Zhan Q.-F., Li R.-W. Fabrication, properties, and applications of flexible magnetic films. Chin. Phys. B. 2013;22:127502. doi: 10.1088/1674-1056/22/12/127502. DOI
Safarik I., Pospiskova K., Horska K., Safarikova M. Potential of magnetically responsive (nano)biocomposites. Soft Matter. 2012;8:5407–5413. doi: 10.1039/c2sm06861c. DOI
Nawaz S., Rashid E.U., Bagheri A.R., Aramesh N., Bhatt P., Ali N., Nguyen T.A., Bilal M. Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. Chemosphere. 2021;276:130241. doi: 10.1016/j.chemosphere.2021.130241. PubMed DOI
Ali N., Zaman H., Bilal M., Shah A.-u.-H.A., Nazir M.S., Iqbal H.M.N. Environmental perspectives of interfacially active and magnetically recoverable composite materials—A review. Sci. Total Environ. 2019;670:523–538. doi: 10.1016/j.scitotenv.2019.03.209. PubMed DOI
Lalegül-Ülker Ö., Vurat M.T., Elçin A.E., Elçin Y.M. Magnetic silk fibroin composite nanofibers for biomedical applications: Fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J. Appl. Polym. Sci. 2019;136:48040. doi: 10.1002/app.48040. DOI
Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI
Melnikova L., Pospiskova K., Mitroova Z., Kopcansky P., Safarik I. Peroxidase-like activity of magnetoferritin. Microchim. Acta. 2014;181:295–301. doi: 10.1007/s00604-013-1105-5. DOI
Safarik I., Prochazkova J., Schroer M.A., Garamus V.M., Kopcansky P., Timko M., Rajnak M., Karpets M., Ivankov O.I., Avdeev M.V., et al. Cotton textile/iron oxide manozyme composites with peroxidase-like activity: Preparation, characterization, and application. ACS Appl. Mater. Interfaces. 2021;13:23627–23637. doi: 10.1021/acsami.1c02154. PubMed DOI
Safarik I., Pospiskova K., Horska K., Maderova Z., Safarikova M. Magnetically responsive (nano)biocomposites. In: Prokop A., Iwasaki Y., Harada A., editors. Intracellular Delivery. Volume 2. Springer; Berlin/Heidelberg, Germany: 2014. pp. 17–34.
Pospiskova K., Mohr G.J., Prochazkova J., Timko M., Rajnak M., Paulovicova K., Kopcansky P., Giovannini G., Boesel L.F., Safarik I. Scalable production of magnetic fluorescent cellulose microparticles. Cellulose. 2021;28:7675–7685. doi: 10.1007/s10570-021-04018-y. DOI
Safarik I., Prochazkova J., Baldikova E., Timko M., Kopcansky P., Rajnak M., Torma N., Pospiskova K. Modification of diamagnetic materials using magnetic fluids. Ukr. J. Phys. 2020;65:751. doi: 10.15407/ujpe65.9.751. DOI
Safarik I., Safarikova M. One-step magnetic modification of non-magnetic solid materials. Int. J. Mater. Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI
Pospiskova K., Safarik I. Low-temperature magnetic modification of sensitive biological materials. Mater. Lett. 2015;142:184–188. doi: 10.1016/j.matlet.2014.11.163. DOI
Padmakumar S., Paul-Prasanth B., Pavithran K., Vijaykumar D.K., Rajanbabu A., Sivanarayanan T.B., Kadakia E., Amiji M.M., Nair S.V., Menon D. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomed. Nanotechnol. Biol. Med. 2019;15:274–284. doi: 10.1016/j.nano.2018.10.002. PubMed DOI
Ignatova M., Rashkov I., Manolova N. Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opin. Drug Deliv. 2013;10:469–483. doi: 10.1517/17425247.2013.758103. PubMed DOI
Yu D.G., Yu J.H., Chen L., Williams G.R., Wang X. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr. Polym. 2012;90:1016–1023. doi: 10.1016/j.carbpol.2012.06.036. PubMed DOI
Zhu T., Chen S., Li W., Lou J., Wang J. Flurbiprofen axetil loaded coaxial electrospun poly(vinyl pyrrolidone)–nanopoly(lactic-co-glycolic acid) core–shell composite nanofibers: Preparation, characterization, and anti-adhesion activity. J. Appl. Polym. Sci. 2015;132:41982. doi: 10.1002/app.41982. DOI
Huang W., Zou T., Li S., Jing J., Xia X., Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech. 2013;14:675–681. doi: 10.1208/s12249-013-9953-1. PubMed DOI PMC
Bhattarai R.S., Bachu R.D., Boddu S.H.S., Bhaduri S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics. 2018;11:5. doi: 10.3390/pharmaceutics11010005. PubMed DOI PMC
Savva I., Odysseos A.D., Evaggelou L., Marinica O., Vasile E., Vekas L., Sarigiannis Y., Krasia-Christoforou T. Fabrication, characterization, and evaluation in drug release properties of magnetoactive poly(ethylene oxide)–poly(l-lactide) electrospun membranes. Biomacromolecules. 2013;14:4436–4446. doi: 10.1021/bm401363v. PubMed DOI
Molcan M., Safarik I., Pospiskova K., Paulovicova K., Timko M., Kopcansky P., Torma N. Magnetically modified electrospun nanofibers for hyperthermia treatment. Ukr. J. Phys. 2020;65:655. doi: 10.15407/ujpe65.8.655. DOI
Faridi-Majidi R., Sharifi-Sanjani N. In Situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. J. Appl. Polym. Sci. 2007;105:1351–1355. doi: 10.1002/app.26230. DOI
Prochazkova J., Pospiskova K., Safarik I. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. J. Magn. Magn. Mater. 2019;473:335–340. doi: 10.1016/j.jmmm.2018.10.106. DOI
Safarik I., Pospiskova K., Baldikova E., Savva I., Vekas L., Marinica O., Tanasa E., Krasia-Christoforou T. Fabrication and bioapplications of magnetically modified chitosan-based electrospun nanofibers. Electrospinning. 2018;2:29–39. doi: 10.1515/esp-2018-0003. DOI
Jia Y., Yang C., Chen X., Xue W., Hutchins-Crawford H.J., Yu Q., Topham P.D., Wang L. A review on electrospun magnetic nanomaterials: Methods, properties and applications. J. Mater. Chem. C. 2021;9:9042–9082. doi: 10.1039/D1TC01477C. DOI
Ortolani A., Bianchi M., Mosca M., Caravelli S., Fuiano M., Marcacci M., Russo A. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: A review. Joints. 2017;4:228–235. doi: 10.11138/jts/2016.4.4.228. PubMed DOI PMC
Nikolaou M., Avraam K., Kolokithas-Ntoukas A., Bakandritsos A., Lizal F., Misik O., Maly M., Jedelsky J., Savva I., Balanean F., et al. Superparamagnetic electrospun microrods for magnetically-guided pulmonary drug delivery with magnetic heating. Mater. Sci. Eng. C. 2021;126:112117. doi: 10.1016/j.msec.2021.112117. PubMed DOI
Chen S., Boda S.K., Batra S.K., Li X., Xie J. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater. 2018;7:e1701024. doi: 10.1002/adhm.201701024. PubMed DOI PMC
Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9:656. doi: 10.3390/nano9040656. PubMed DOI PMC
Matos A.M., Gonçalves A.I., Rodrigues M.T., Miranda M.S., Haj A.J.E., Reis R.L., Gomes M.E. Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomater. 2020;113:488–500. doi: 10.1016/j.actbio.2020.07.009. PubMed DOI
Gonçalves A.I., Rodrigues M.T., Carvalho P.P., Bañobre-López M., Paz E., Freitas P., Gomes M.E. Exploring the potential of starch/polycaprolactone aligned magnetic responsive ccaffolds for tendon regeneration. Adv. Healthc. Mater. 2016;5:213–222. doi: 10.1002/adhm.201500623. PubMed DOI
Hao S., Meng J., Zhang Y., Liu J., Nie X., Wu F., Yang Y., Wang C., Gu N., Xu H. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials. 2017;140:16–25. doi: 10.1016/j.biomaterials.2017.06.013. PubMed DOI
Shuai C., Yang W., He C., Peng S., Gao C., Yang Y., Qi F., Feng P. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater. Des. 2020;185:108275. doi: 10.1016/j.matdes.2019.108275. DOI
Sapir Y., Polyak B., Cohen S. Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology. 2014;25:014009. doi: 10.1088/0957-4484/25/1/014009. PubMed DOI PMC
Sapir Y., Cohen S., Friedman G., Polyak B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 2012;33:4100–4109. doi: 10.1016/j.biomaterials.2012.02.037. PubMed DOI PMC
Caizer C. Nanoparticle size effect on some magnetic properties. In: Aliofkhazraei M., editor. Handbook of Nanoparticles. Springer International Publishing; Cham, Switzerland: 2016. pp. 475–519.
Sagare R.D. Halloysite nanotubes: Design, characterization and applications. A review. Farmacia. 2021;69:208–214. doi: 10.31925/farmacia.2021.2.3. DOI
Feldman D. Polymer nanocomposites in medicine. J. Macromol. Sci. Part A. 2016;53:55–62. doi: 10.1080/10601325.2016.1110459. DOI
Kalia S., Kango S., Kumar A., Haldorai Y., Kumari B., Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014;292:2025–2052. doi: 10.1007/s00396-014-3357-y. DOI
Abdullayev E., Lvov Y. Chapter 22—Halloysite for controllable loading and release. In: Yuan P., Thill A., Bergaya F., editors. Developments in Clay Science. Volume 7. Elsevier; Amsterdam, The Netherlands: 2016. pp. 554–605.
Steele L., Margolis G., Cohen S., Polyak B. Smart Materials for Tissue Engineering: Applications. The Royal Society of Chemistry; London, UK: 2017. Chapter 11: Applications of magnetic-responsive materials for cardiovascular tissue engineering; pp. 290–328.
Riela G.S., Fakhrullin R.F. Clay-based drug-delivery systems: What does the future hold? Ther. Deliv. 2017;8:633–646. doi: 10.4155/tde-2017-0041. PubMed DOI
Yendluri R., Lvov Y., de Villiers M.M., Vinokurov V., Naumenko E., Tarasova E., Fakhrullin R. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J. Pharm. Sci. 2017;106:3131–3139. doi: 10.1016/j.xphs.2017.05.034. PubMed DOI
Satish S., Tharmavaram M., Rawtani D. Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine. 2019;6:1–16. doi: 10.1177/1849543519863625. PubMed DOI PMC
Prinz Setter O., Segal E. Halloysite nanotubes—The nano-bio interface. Nanoscale. 2020;12:23444–23460. doi: 10.1039/D0NR06820A. PubMed DOI
Kushwaha S.K., Kushwaha N., Pandey P., Fatma B. Halloysite nanotubes for nanomedicine: Prospects, challenges and applications. BioNanoScience. 2021;11:200–208. doi: 10.1007/s12668-020-00801-6. DOI
Kausar A. Review on polymer/halloysite nanotube nanocomposite. Polym.-Plast. Technol. Eng. 2018;57:548–564. doi: 10.1080/03602559.2017.1329436. DOI
Safarik I., Baldikova E., Prochazkova J., Safarikova M., Pospiskova K. Magnetically modified agricultural and food waste: Preparation and application. J. Agric. Food Chem. 2018;66:2538–2552. doi: 10.1021/acs.jafc.7b06105. PubMed DOI
Janacek D., Kvitek L., Karlikova M., Pospiskova K., Safarik I. Removal of silver nanoparticles with native and magnetically modified halloysite. Appl. Clay Sci. 2018;162:10–14. doi: 10.1016/j.clay.2018.05.024. DOI
Khunová V., Šafařík I., Škrátek M., Kelnar I., Tomanová K. Biodegradable polymer nanocomposites based on natural nanotubes: Effect of magnetically modified halloysite on the behaviour of polycaprolactone. Clay Miner. 2018;51:435–444. doi: 10.1180/claymin.2016.051.3.05. DOI
Khunová V., Pavliňáková V., Škrátek M., Šafařík I., Pavliňák D. Magnetic halloysite reinforced biodegradable nanofibres: New challenge for medical applications. AIP Conf. Proc. 2018;1981:020074. doi: 10.1063/1.5045936. DOI
Türkeş E., Sağ Açıkel Y. Synthesis and characterization of magnetic halloysite–chitosan nanocomposites: Use in the removal of methylene blue in wastewaters. Int. J. Environ. Sci. Technol. 2020;17:1281–1294. doi: 10.1007/s13762-019-02550-w. DOI
Maleki A., Hajizadeh Z., Firouzi-Haji R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 2018;259:46–53. doi: 10.1016/j.micromeso.2017.09.034. DOI
Hamza H., Ferretti A.M., Innocenti C., Fidecka K., Licandro E., Sangregorio C., Maggioni D. An approach for magnetic halloysite nanocomposite with selective loading of superparamagnetic magnetite nanoparticles in the lumen. Inorg. Chem. 2020;59:12086–12096. doi: 10.1021/acs.inorgchem.0c01039. PubMed DOI PMC
Xie Y., Qian D., Wu D., Ma X. Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem. Eng. J. 2011;168:959–963. doi: 10.1016/j.cej.2011.02.031. DOI
Rihova M., Ince A.E., Cicmancova V., Hromadko L., Castkova K., Pavlinak D., Vojtova L., Macak J.M. Water-born 3D nanofiber mats using cost-effective centrifugal spinning: Comparison with electrospinning process: A complex study. J. Appl. Polym. Sci. 2021;138:49975. doi: 10.1002/app.49975. DOI
Calisir M.D., Kilic A. A comparative study on SiO2 nanofiber production via two novel non-electrospinning methods: Centrifugal spinning vs solution blowing. Mater. Lett. 2020;258:126751. doi: 10.1016/j.matlet.2019.126751. DOI
Heseltine P.L., Ahmed J., Edirisinghe M. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol. Mater. Eng. 2018;303:1800218. doi: 10.1002/mame.201800218. DOI
Hassan M.A., Yeom B.Y., Wilkie A., Pourdeyhimi B., Khan S.A. Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 2013;427:336–344. doi: 10.1016/j.memsci.2012.09.050. DOI
Mahalingam S., Matharu R., Homer-Vanniasinkam S., Edirisinghe M. Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl. Phys. Rev. 2020;7:041302. doi: 10.1063/5.0008310. DOI
Yu M., Dong R.-H., Yan X., Yu G.-F., You M.-H., Ning X., Long Y.-Z. Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production. Macromol. Mater. Eng. 2017;302:1700002. doi: 10.1002/mame.201700002. DOI
Persano L., Camposeo A., Tekmen C., Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol. Mater. Eng. 2013;298:504–520. doi: 10.1002/mame.201200290. DOI
Pavliňáková V., Fohlerová Z., Pavliňák D., Khunová V., Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater. Sci. Eng. C. 2018;91:94–102. doi: 10.1016/j.msec.2018.05.033. PubMed DOI
Safarik I., Lunackova P., Mosiniewicz-Szablewska E., Weyda F., Safarikova M. Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung. 2007;61:247–253. doi: 10.1515/HF.2007.060. DOI
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981;17:1247–1248. doi: 10.1109/TMAG.1981.1061188. DOI
Kiwada H., Sato J., Yamada S., Kato Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. 1986;34:4253–4258. doi: 10.1248/cpb.34.4253. PubMed DOI
Luo P., Zhao Y., Zhang B., Liu J., Yang Y., Liu J. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010;44:1489–1497. doi: 10.1016/j.watres.2009.10.042. PubMed DOI
Jancar J., Ondreas F., Lepcio P., Zboncak M., Zarybnicka K. Mechanical properties of glassy polymers with controlled NP spatial organization. Polym. Test. 2020;90:106640. doi: 10.1016/j.polymertesting.2020.106640. DOI
Dorigato A., D’Amato M., Pegoretti A. Thermo-mechanical properties of high density polyethylene—Fumed silica nanocomposites: Effect of filler surface area and treatment. J. Polym. Res. 2012;19:9889. doi: 10.1007/s10965-012-9889-2. DOI
Fu S., Sun Z., Huang P., Li Y., Hu N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019;1:2–30. doi: 10.1016/j.nanoms.2019.02.006. DOI
Ondreas F., Lepcio P., Zboncak M., Zarybnicka K., Govaert L.E., Jancar J. Effect of nanoparticle organization on molecular mobility and mechanical properties of polymer nanocomposites. Macromolecules. 2019;52:6250–6259. doi: 10.1021/acs.macromol.9b01197. DOI
Zarybnicka K., Ondreas F., Lepcio P., Kalina M., Zboncak M., Jancar J. Thermodynamic parameters controlling nanoparticle spatial packing in polymer solutions. Macromolecules. 2020;53:8704–8713. doi: 10.1021/acs.macromol.0c00698. DOI
Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Caha O., Jancar J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: The origin and properties of aggregates and polymer bound clusters. Soft Matter. 2018;14:2094–2103. doi: 10.1039/C8SM00150B. PubMed DOI
Zboncak M., Ondreas F., Uhlir V., Lepcio P., Michalicka J., Jancar J. Translation of segment scale stiffening into macroscale reinforcement in polymer nanocomposites. Polym. Eng. Sci. 2020;60:587–596. doi: 10.1002/pen.25317. DOI
Jancar J., Douglas J.F., Starr F.W., Kumar S.K., Cassagnau P., Lesser A.J., Sternstein S.S., Buehler M.J. Current issues in research on structure–property relationships in polymer nanocomposites. Polymer. 2010;51:3321–3343. doi: 10.1016/j.polymer.2010.04.074. DOI
Lepcio P., Ondreáš F., Zárybnická K., Zbončák M., Svatík J., Jančář J. Phase diagram of bare particles in polymer nanocomposites: Uniting solution and melt blending. Polymer. 2021;230:124033. doi: 10.1016/j.polymer.2021.124033. DOI