Nanostructured Plasma Polymerized Fluorocarbon Films for Drop Coating Deposition Raman Spectroscopy (DCDRS) of Liposomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10897S
Czech Science Foundation
UNCE/SCI/01
Charles University Research Centre program
GAUK 290120
Grant Agency of Charles University
PubMed
34833322
PubMed Central
PMC8625625
DOI
10.3390/polym13224023
PII: polym13224023
Knihovny.cz E-zdroje
- Klíčová slova
- DCDRS, drop coating deposition Raman spectroscopy, liposomes, nanostructured surfaces, plasma polymers, wettability,
- Publikační typ
- časopisecké články MeSH
Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.
Zobrazit více v PubMed
Li S., Huang J., Chen Z., Chen G., Lai Y. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A. 2017;5:31–55. doi: 10.1039/C6TA07984A. DOI
van Osch T.H.J., Perelaer J., de Laat A.W.M., Schubert U.S. Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates. Adv. Mater. 2008;20:343–345. doi: 10.1002/adma.200701876. DOI
Su X., Li X., Ong C.Y.A., Herng T.S., Wang Y., Peng E., Ding J. Metallization of 3D Printed Polymers and Their Application as a Fully Functional Water-Splitting System. Adv. Sci. 2019;6:1801670. doi: 10.1002/advs.201801670. PubMed DOI PMC
Ferreira P., Alves P., Coimbra P., Gil M.H. Improving polymeric surfaces for biomedical applications: A review. J. Coat. Technol. Res. 2015;12:463–475. doi: 10.1007/s11998-015-9658-3. DOI
Kim M.S., Khang G., Lee H.B. Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 2008;33:138–164. doi: 10.1016/j.progpolymsci.2007.06.001. DOI
van Wachem P.B., Beugeling T., Feijen J., Bantjes A., Detmers J.P., van Aken W.G. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–408. doi: 10.1016/0142-9612(85)90101-2. PubMed DOI
Lee J.H., Khang G., Lee J.W., Lee H.B. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 1998;205:323–330. doi: 10.1006/jcis.1998.5688. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Cai S., Wu C., Yang W., Liang W., Yu H., Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020;9:971–989. doi: 10.1515/ntrev-2020-0076. DOI
Mampallil D., Eral H.B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 2018;252:38–54. doi: 10.1016/j.cis.2017.12.008. PubMed DOI
Parsa M., Harmand S., Sefiane K. Mechanisms of pattern formation from dried sessile drops. Adv. Colloid Interface Sci. 2018;254:22–47. doi: 10.1016/j.cis.2018.03.007. PubMed DOI
Zang D., Tarafdar S., Tarasevich Y.Y., Dutta Choudhury M., Dutta T. Evaporation of a Droplet: From physics to applications. Phys. Rep. 2019;804:1–56. doi: 10.1016/j.physrep.2019.01.008. DOI
Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–829. doi: 10.1038/39827. DOI
Zhang D., Xie Y., Mrozek M.F., Ortiz C., Davisson V.J., Ben-Amotz D. Raman Detection of Proteomic Analytes. Anal. Chem. 2003;75:5703–5709. doi: 10.1021/ac0345087. PubMed DOI
Kopecký V., Baumruk V. Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib. Spectrosc. 2006;42:184–187. doi: 10.1016/j.vibspec.2006.04.019. DOI
Kočišová E., Procházka M. Drop-coating deposition Raman spectroscopy of porphyrins. J. Raman Spectrosc. 2015;46:280–282. doi: 10.1002/jrs.4637. PubMed DOI
Kočišová E., Procházka M. Drop-coating deposition Raman spectroscopy of liposomes. J. Raman Spectrosc. 2011;42:1606–1610. doi: 10.1002/jrs.2915. DOI
Šimáková P., Kocisová E., Procházka M. Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 2013;44:1479–1482. doi: 10.1002/jrs.4364. DOI
Kočišová E., Procházka M. Drop coating deposition Raman spectroscopy of dipicolinic acid. J. Raman Spectrosc. 2018;49:2050–2052. doi: 10.1002/jrs.5493. DOI
Mrozek M.F., Zhang D., Ben-Amotz D. Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis. Carbohydr. Res. 2004;339:141–145. doi: 10.1016/j.carres.2003.09.019. PubMed DOI
Kuižová A., Přikryl M., Procházka M., Kočišová E. Drop coating deposition Raman (DCDR) spectroscopy of contaminants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;262:120109. doi: 10.1016/j.saa.2021.120109. PubMed DOI
Filik J., Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta. 2008;616:177–184. doi: 10.1016/j.aca.2008.04.036. PubMed DOI
Filik J., Stone N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectrosc. 2009;40:218–224. doi: 10.1002/jrs.2113. DOI
Hu P., Zheng X.-S., Zong C., Li M.-H., Zhang L.-Y., Li W., Ren B. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J. Raman Spectrosc. 2014;45:565–573. doi: 10.1002/jrs.4499. DOI
Dingari N.C., Horowitz G.L., Kang J.W., Dasari R.R., Barman I. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE. 2012;7:e32406. doi: 10.1371/journal.pone.0032406. PubMed DOI PMC
Abdolahzadeh S., Boyle N.M., Draksharapu A., Dennis A.C., Hage R., de Boer J.W., Browne W.R. Off-line reaction monitoring of the oxidation of alkenes in water using drop coating deposition Raman (DCDR) spectroscopy. Analyst. 2013;138:3163–3171. doi: 10.1039/c3an00330b. PubMed DOI
Xie Y., Jiang Y., Ben-Amotz D. Detection of amino acid and peptide phosphate protonation using Raman spectroscopy. Anal. Biochem. 2005;343:223–230. doi: 10.1016/j.ab.2005.05.038. PubMed DOI
Kočišová E., Procházka M., Vaculčiaková L. Drop-Coating Deposition Raman (DCDR) Spectroscopy as a Tool for Membrane Interaction Studies: Liposome–Porphyrin Complex. Appl. Spectrosc. 2015;69:939–945. doi: 10.1366/14-07836. PubMed DOI
Zhang D., Mrozek M.F., Xie Y., Ben-Amotz D. Chemical Segregation and Reduction of Raman Background Interference Using Drop Coating Deposition. Appl. Spectrosc. 2004;58:929–933. doi: 10.1366/0003702041655430. PubMed DOI
Filik J., Stone N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst. 2007;132:544–550. doi: 10.1039/b701541k. PubMed DOI
Prochazka M. Surface-Enhanced Raman Spectroscopy. Bioanalytical, Biomolecular and Medical Applications. 1st ed. Springer; Cham, Switzerland: 2016. pp. 1–221.
Mosier-Boss P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials. 2017;7:142. doi: 10.3390/nano7060142. PubMed DOI PMC
Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L. A Review on Surface-Enhanced Raman Scattering. Biosensors. 2019;9:57. doi: 10.3390/bios9020057. PubMed DOI PMC
Kocisova E., Petr M., Sipova H., Kylian O., Prochazka M. Drop coating deposition of a liposome suspension on surfaces with different wettabilities: “Coffee ring” formation and suspension preconcentration. Phys. Chem. Chem. Phys. 2017;19:388–393. doi: 10.1039/C6CP07606H. PubMed DOI
Kylián O., Polonskyi O., Kratochvíl J., Artemenko A., Choukourov A., Drábik M., Solař P., Slavínská D., Biederman H. Control of Wettability of Plasma Polymers by Application of Ti Nano-Clusters. Plasma Process. Polym. 2012;9:180–187. doi: 10.1002/ppap.201100113. DOI
Kylián O., Petr M., Serov A., Solař P., Polonskyi O., Hanuš J., Choukourov A., Biederman H. Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum. 2014;100:57–60. doi: 10.1016/j.vacuum.2013.07.014. DOI
Kratochvíl J., Kuzminova A., Solař P., Hanuš J., Kylián O., Biederman H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum. 2019;166:50–56. doi: 10.1016/j.vacuum.2019.04.050. DOI
Haberland H., Karrais M., Mall M., Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI
MacDonald R., Macdonald R., Menco B., Takeshita K., Subbarao N., Hu L.-r. Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochim. Biophys. Acta. 1991;1061:297–303. doi: 10.1016/0005-2736(91)90295-J. PubMed DOI
Palacký J., Mojzeš P., Bok J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011;42:1528–1539. doi: 10.1002/jrs.2896. DOI
Malinowski E.R. Factor Analysis in Chemistry. 3rd ed. Wiley; New York, NY, USA: 2002.
Choukourov A., Kylian O., Petr M., Vaidulych M., Nikitin D., Hanus J., Artemenko A., Shelemin A., Gordeev I., Kolska Z., et al. RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer. Nanoscale. 2017;9:2616–2625. doi: 10.1039/C6NR08428A. PubMed DOI
Wenzel R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. DOI
Pittoni P.G., Chang C.-C., Yu T.-S., Lin S.-Y. Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line. Colloids Surf. A Physicochem. Eng. Asp. 2013;432:89–98. doi: 10.1016/j.colsurfa.2013.04.045. DOI
Czamara K., Majzner K., Pacia M.Z., Kochan K., Kaczor A., Baranska M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015;46:4–20. doi: 10.1002/jrs.4607. DOI
Levin I.W. Vibrational spectroscopy of membrane assemblies. In: Clark R.J.H., Hester R.E., editors. Advances in Infrared and Raman Sepctroscopy. 1st ed. Volume 12. Wiley; New York, NY, USA: 1984. p. 48.