Nanostructured Plasma Polymerized Fluorocarbon Films for Drop Coating Deposition Raman Spectroscopy (DCDRS) of Liposomes

. 2021 Nov 21 ; 13 (22) : . [epub] 20211121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34833322

Grantová podpora
18-10897S Czech Science Foundation
UNCE/SCI/01 Charles University Research Centre program
GAUK 290120 Grant Agency of Charles University

Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.

Zobrazit více v PubMed

Li S., Huang J., Chen Z., Chen G., Lai Y. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A. 2017;5:31–55. doi: 10.1039/C6TA07984A. DOI

van Osch T.H.J., Perelaer J., de Laat A.W.M., Schubert U.S. Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates. Adv. Mater. 2008;20:343–345. doi: 10.1002/adma.200701876. DOI

Su X., Li X., Ong C.Y.A., Herng T.S., Wang Y., Peng E., Ding J. Metallization of 3D Printed Polymers and Their Application as a Fully Functional Water-Splitting System. Adv. Sci. 2019;6:1801670. doi: 10.1002/advs.201801670. PubMed DOI PMC

Ferreira P., Alves P., Coimbra P., Gil M.H. Improving polymeric surfaces for biomedical applications: A review. J. Coat. Technol. Res. 2015;12:463–475. doi: 10.1007/s11998-015-9658-3. DOI

Kim M.S., Khang G., Lee H.B. Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 2008;33:138–164. doi: 10.1016/j.progpolymsci.2007.06.001. DOI

van Wachem P.B., Beugeling T., Feijen J., Bantjes A., Detmers J.P., van Aken W.G. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–408. doi: 10.1016/0142-9612(85)90101-2. PubMed DOI

Lee J.H., Khang G., Lee J.W., Lee H.B. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 1998;205:323–330. doi: 10.1006/jcis.1998.5688. PubMed DOI

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Cai S., Wu C., Yang W., Liang W., Yu H., Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020;9:971–989. doi: 10.1515/ntrev-2020-0076. DOI

Mampallil D., Eral H.B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 2018;252:38–54. doi: 10.1016/j.cis.2017.12.008. PubMed DOI

Parsa M., Harmand S., Sefiane K. Mechanisms of pattern formation from dried sessile drops. Adv. Colloid Interface Sci. 2018;254:22–47. doi: 10.1016/j.cis.2018.03.007. PubMed DOI

Zang D., Tarafdar S., Tarasevich Y.Y., Dutta Choudhury M., Dutta T. Evaporation of a Droplet: From physics to applications. Phys. Rep. 2019;804:1–56. doi: 10.1016/j.physrep.2019.01.008. DOI

Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–829. doi: 10.1038/39827. DOI

Zhang D., Xie Y., Mrozek M.F., Ortiz C., Davisson V.J., Ben-Amotz D. Raman Detection of Proteomic Analytes. Anal. Chem. 2003;75:5703–5709. doi: 10.1021/ac0345087. PubMed DOI

Kopecký V., Baumruk V. Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib. Spectrosc. 2006;42:184–187. doi: 10.1016/j.vibspec.2006.04.019. DOI

Kočišová E., Procházka M. Drop-coating deposition Raman spectroscopy of porphyrins. J. Raman Spectrosc. 2015;46:280–282. doi: 10.1002/jrs.4637. PubMed DOI

Kočišová E., Procházka M. Drop-coating deposition Raman spectroscopy of liposomes. J. Raman Spectrosc. 2011;42:1606–1610. doi: 10.1002/jrs.2915. DOI

Šimáková P., Kocisová E., Procházka M. Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 2013;44:1479–1482. doi: 10.1002/jrs.4364. DOI

Kočišová E., Procházka M. Drop coating deposition Raman spectroscopy of dipicolinic acid. J. Raman Spectrosc. 2018;49:2050–2052. doi: 10.1002/jrs.5493. DOI

Mrozek M.F., Zhang D., Ben-Amotz D. Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis. Carbohydr. Res. 2004;339:141–145. doi: 10.1016/j.carres.2003.09.019. PubMed DOI

Kuižová A., Přikryl M., Procházka M., Kočišová E. Drop coating deposition Raman (DCDR) spectroscopy of contaminants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;262:120109. doi: 10.1016/j.saa.2021.120109. PubMed DOI

Filik J., Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta. 2008;616:177–184. doi: 10.1016/j.aca.2008.04.036. PubMed DOI

Filik J., Stone N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectrosc. 2009;40:218–224. doi: 10.1002/jrs.2113. DOI

Hu P., Zheng X.-S., Zong C., Li M.-H., Zhang L.-Y., Li W., Ren B. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J. Raman Spectrosc. 2014;45:565–573. doi: 10.1002/jrs.4499. DOI

Dingari N.C., Horowitz G.L., Kang J.W., Dasari R.R., Barman I. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE. 2012;7:e32406. doi: 10.1371/journal.pone.0032406. PubMed DOI PMC

Abdolahzadeh S., Boyle N.M., Draksharapu A., Dennis A.C., Hage R., de Boer J.W., Browne W.R. Off-line reaction monitoring of the oxidation of alkenes in water using drop coating deposition Raman (DCDR) spectroscopy. Analyst. 2013;138:3163–3171. doi: 10.1039/c3an00330b. PubMed DOI

Xie Y., Jiang Y., Ben-Amotz D. Detection of amino acid and peptide phosphate protonation using Raman spectroscopy. Anal. Biochem. 2005;343:223–230. doi: 10.1016/j.ab.2005.05.038. PubMed DOI

Kočišová E., Procházka M., Vaculčiaková L. Drop-Coating Deposition Raman (DCDR) Spectroscopy as a Tool for Membrane Interaction Studies: Liposome–Porphyrin Complex. Appl. Spectrosc. 2015;69:939–945. doi: 10.1366/14-07836. PubMed DOI

Zhang D., Mrozek M.F., Xie Y., Ben-Amotz D. Chemical Segregation and Reduction of Raman Background Interference Using Drop Coating Deposition. Appl. Spectrosc. 2004;58:929–933. doi: 10.1366/0003702041655430. PubMed DOI

Filik J., Stone N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst. 2007;132:544–550. doi: 10.1039/b701541k. PubMed DOI

Prochazka M. Surface-Enhanced Raman Spectroscopy. Bioanalytical, Biomolecular and Medical Applications. 1st ed. Springer; Cham, Switzerland: 2016. pp. 1–221.

Mosier-Boss P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials. 2017;7:142. doi: 10.3390/nano7060142. PubMed DOI PMC

Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L. A Review on Surface-Enhanced Raman Scattering. Biosensors. 2019;9:57. doi: 10.3390/bios9020057. PubMed DOI PMC

Kocisova E., Petr M., Sipova H., Kylian O., Prochazka M. Drop coating deposition of a liposome suspension on surfaces with different wettabilities: “Coffee ring” formation and suspension preconcentration. Phys. Chem. Chem. Phys. 2017;19:388–393. doi: 10.1039/C6CP07606H. PubMed DOI

Kylián O., Polonskyi O., Kratochvíl J., Artemenko A., Choukourov A., Drábik M., Solař P., Slavínská D., Biederman H. Control of Wettability of Plasma Polymers by Application of Ti Nano-Clusters. Plasma Process. Polym. 2012;9:180–187. doi: 10.1002/ppap.201100113. DOI

Kylián O., Petr M., Serov A., Solař P., Polonskyi O., Hanuš J., Choukourov A., Biederman H. Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum. 2014;100:57–60. doi: 10.1016/j.vacuum.2013.07.014. DOI

Kratochvíl J., Kuzminova A., Solař P., Hanuš J., Kylián O., Biederman H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum. 2019;166:50–56. doi: 10.1016/j.vacuum.2019.04.050. DOI

Haberland H., Karrais M., Mall M., Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI

MacDonald R., Macdonald R., Menco B., Takeshita K., Subbarao N., Hu L.-r. Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochim. Biophys. Acta. 1991;1061:297–303. doi: 10.1016/0005-2736(91)90295-J. PubMed DOI

Palacký J., Mojzeš P., Bok J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011;42:1528–1539. doi: 10.1002/jrs.2896. DOI

Malinowski E.R. Factor Analysis in Chemistry. 3rd ed. Wiley; New York, NY, USA: 2002.

Choukourov A., Kylian O., Petr M., Vaidulych M., Nikitin D., Hanus J., Artemenko A., Shelemin A., Gordeev I., Kolska Z., et al. RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer. Nanoscale. 2017;9:2616–2625. doi: 10.1039/C6NR08428A. PubMed DOI

Wenzel R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. DOI

Pittoni P.G., Chang C.-C., Yu T.-S., Lin S.-Y. Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line. Colloids Surf. A Physicochem. Eng. Asp. 2013;432:89–98. doi: 10.1016/j.colsurfa.2013.04.045. DOI

Czamara K., Majzner K., Pacia M.Z., Kochan K., Kaczor A., Baranska M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015;46:4–20. doi: 10.1002/jrs.4607. DOI

Levin I.W. Vibrational spectroscopy of membrane assemblies. In: Clark R.J.H., Hester R.E., editors. Advances in Infrared and Raman Sepctroscopy. 1st ed. Volume 12. Wiley; New York, NY, USA: 1984. p. 48.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...