Label-free metabolic fingerprinting of motile mammalian spermatozoa with subcellular resolution
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-06272S
Grantová Agentura České Republiky
RVO 68378050
Akademie Věd České Republiky
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023036
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015042
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
CZ.02.01.01/00/23_015/0008189
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
PubMed
40128804
PubMed Central
PMC11934609
DOI
10.1186/s12915-025-02167-1
PII: 10.1186/s12915-025-02167-1
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, FLIM, Fertility, Metabolism, NADH, NADPH, Sperm,
- MeSH
- metabolom * MeSH
- mitochondrie metabolismus MeSH
- motilita spermií * fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- spermie * metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sperm metabolic pathways that generate energy for motility are compartmentalized within the flagellum. Dysfunctions in metabolic compartments, namely mitochondrial respiration and glycolysis, can compromise motility and male fertility. Studying these compartments is thus required for fertility treatment. However, it is very challenging to capture images of metabolic compartments in motile spermatozoa because the fast beating of the flagellum introduces motion blur. Therefore, most approaches immobilize spermatozoa prior to imaging. RESULTS: Our findings indicate that immobilizing sperm alters their metabolic profile, highlighting the necessity for measuring metabolism in spermatozoa during movement. We achieved this by encapsulating mouse epididymis in a hydrogel followed by two-photon fluorescence lifetime imaging microscopy for imaging motile sperm in situ. The autofluorescence of endogenous metabolites-FAD, NADH, and NADPH-enabled us to visualize sperm metabolic compartments without staining. We trained machine learning for automated image segmentation and generated metabolic fingerprints using object-based phasor analysis. We show that metabolic fingerprints of spermatozoa and the mitochondrial compartment (1) can distinguish individual males by genetic background, age, or fecundity status, (2) correlate with fertility, and (3) change with age likely due to increased oxidative metabolism. CONCLUSIONS: Our approach eliminates the need for sperm immobilization and labeling and captures the native state of sperm metabolism. This technique could be adapted for metabolism-based sperm selection for assisted reproduction.
Imaging Methods Core Facility at BIOCEV Faculty of Science Charles University Vestec Czech Republic
Present addresses Instituto Biofisika CSIC UPV EHU Leioa Spain
Zobrazit více v PubMed
Zecchin A, Stapor PC, Goveia J, Carmeliet P. Metabolic pathway compartmentalization: an underappreciated opportunity? Curr Opin Biotechnol. 2015;34:73–81. PubMed
Lindemann CB, Lesich KA. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken). 2016;73(11):652–69. PubMed
Freitas MJ, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility. Biol Reprod. 2017;96(1):2–12. PubMed
Ford WC. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum Reprod Update. 2006;12(3):269–74. PubMed
du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230–5. PubMed PMC
Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plon S, Monteiro N, Garcia-Parraga D, Ruiz-Diaz S, Sanchez-Calabuig MJ, et al. A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol. 2021;31(16):3648–3655 e3649. PubMed
Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse. J Reprod Fertil. 1981;61(1):25–35. PubMed
Bone W, Jones NG, Kamp G, Yeung CH, Cooper TG. Effect of ornidazole on fertility of male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilization in vitro. J Reprod Fertil. 2000;118(1):127–35. PubMed
Hoshi K, Tsukikawa S, Sato A. Importance of Ca2+, K+ and glucose in the medium for sperm penetration through the human zona pellucida. Tohoku J Exp Med. 1991;165(2):99–104. PubMed
Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl. 2001;22(4):680–95. PubMed
Demain LA, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91(2):199–207. PubMed
Folgero T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8(11):1863–8. PubMed
Carra E, Sangiorgi D, Gattuccio F, Rinaldi AM. Male infertility and mitochondrial DNA. Biochem Biophys Res Commun. 2004;322(1):333–9. PubMed
Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue S, Yonekawa H, Hayashi J. Mitochondria-related male infertility. Proc Natl Acad Sci U S A. 2006;103(41):15148–53. PubMed PMC
Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, Bonekamp NA, Albarran-Gutierrez S, Stewart JB, Larsson NG. Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell Metab. 2017;26(2):429–436 e424. PubMed
Rovio AT, Marchington DR, Donat S, Schuppe HC, Abel J, Fritsche E, Elliott DJ, Laippala P, Ahola AL, McNay D, et al. Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nat Genet. 2001;29(3):261–2. PubMed
Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23. PubMed
Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, Mochida K, Inoue K, Ogonuki N, Ogura A, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 2014;111(3):1120–5. PubMed PMC
Liu X, Li Q, Wang W, Liu F. Aberrant expression of spermspecific glycolytic enzymes are associated with poor sperm quality. Mol Med Rep. 2019;19(4):2471–8. PubMed PMC
Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O’Brien DA. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A. 2004;101(47):16501–6. PubMed PMC
Reynolds S, Calvert SJ, Paley MN, Pacey AA. 1H magnetic resonance spectroscopy of live human sperm. Mol Hum Reprod. 2017;23(7):441–51. PubMed PMC
Paiva C, Amaral A, Rodriguez M, Canyellas N, Correig X, Ballesca JL, Ramalho-Santos J, Oliva R. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Andrology. 2015;3(3):496–505. PubMed
Menezes EB, Velho ALC, Santos F, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics. 2019;20(1):714. PubMed PMC
Jensen EC. Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec (Hoboken). 2012;295(12):2031–6. PubMed
Kolenc OI, Quinn KP. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid Redox Signal. 2019;30(6):875–89. PubMed PMC
Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem. 1979;254(11):4764–71. PubMed
Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci U S A. 2000;97(10):5203–7. PubMed PMC
Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J. 2002;82(5):2811–25. PubMed PMC
Blinova K, Levine RL, Boja ES, Griffiths GL, Shi ZD, Ruddy B, Balaban RS. Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry. 2008;47(36):9636–45. PubMed PMC
Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A. 2007;104(49):19494–9. PubMed PMC
Georgakoudi I, Quinn KP. Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng. 2012;14:351–67. PubMed
Georgakoudi I, Quinn KP. Label-free optical metabolic imaging in cells and tissues. Annu Rev Biomed Eng. 2023;25:413–43. PubMed PMC
Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A. 1992;89(4):1271–5. PubMed PMC
Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110(5):2641–84. PubMed PMC
Sparks H, Kondo H, Hooper S, Munro I, Kennedy G, Dunsby C, French P, Sahai E. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy. Nat Commun. 2018;9(1):2662. PubMed PMC
Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C. Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech. 2004;63(1):58–66. PubMed
Becker W. Fluorescence lifetime imaging–techniques and applications. J Microsc. 2012;247(2):119–36. PubMed
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt. 2020;25(7):1–43. PubMed PMC
Serafino MJ, Jo JA. Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation. Biomed Opt Express. 2023;14(4):1608–25. PubMed PMC
Konig K, So PT, Mantulin WW, Tromberg BJ, Gratton E. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc. 1996;183(Pt 3):197–204. PubMed
Pattison DI, Davies MJ. Actions of ultraviolet light on cellular structures. EXS. 2006;96:131–57. PubMed
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: towards high speed and 3D. Curr Opin Solid State Mater Sci. 2024;30:30. PubMed PMC
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR Jr, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. Biomed Opt Express. 2021;12(7):4003–19. PubMed PMC
Samimi K, Desa DE, Lin W, Weiss K, Li J, Huisken J, Miskolci V, Huttenlocher A, Chacko JV, Velten A, et al. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array. J Biomed Opt. 2023;28(6): 066502. PubMed PMC
Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for cellular image analysis. Nat Methods. 2019;16(12):1233–46. PubMed PMC
Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A. 2011;108(33):13582–7. PubMed PMC
Wetzker C, Reinhardt K. Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging. Sci Rep. 2019;9(1):19534. PubMed PMC
Reinhardt K, Breunig HG, Uchugonova A, Konig K. Sperm metabolism is altered during storage by female insects: evidence from two-photon autofluorescence lifetime measurements in bedbugs. J R Soc Interface. 2015;12(110):0609. PubMed PMC
Vishnyakova P, Nikonova E, Jumaniyazova E, Solovyev I, Kirillova A, Farmakovskaya M, Savitsky A, Shirshin E, Sukhikh G, Fatkhudinov T. Fluorescence lifetime imaging microscopy as an instrument for human sperm assessment. Biochem Biophys Res Commun. 2023;645:10–6. PubMed
Cong A, Pimenta RML, Lee HB, Mereddy V, Holy J, Heikal AA. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models. Cytometry A. 2019;95(1):80–92. PubMed
Norambuena A, Wallrabe H, Cao R, Wang DB, Silva A, Svindrych Z, Periasamy A, Hu S, Tanzi RE, Kim DY et al. A novel lysosome‐to‐mitochondria signaling pathway disrupted by amyloid‐ b oligomers. EMBO J. 2018;37(22):1–18. PubMed PMC
Aguilar-Arnal L, Ranjit S, Stringari C, Orozco-Solis R, Gratton E, Sassone-Corsi P. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proc Natl Acad Sci U S A. 2016;113(45):12715–20. PubMed PMC
Wright BK, Andrews LM, Markham J, Jones MR, Stringari C, Digman MA, Gratton E. NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy. Biophys J. 2012;103(1):L7–9. PubMed PMC
Winet H, Bernstein GS, Head J. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J Reprod Fertil. 1984;70(2):511–23. PubMed
Maude AD. Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature. 1963;200:381. PubMed
Woolley DM. Motility of spermatozoa at surfaces. Reproduction. 2003;126(2):259–70. PubMed
Tourmente M, Varea-Sanchez M, Roldan ERS. Faster and more efficient swimming: energy consumption of murine spermatozoa under sperm competitiondagger. Biol Reprod. 2019;100(2):420–8. PubMed
Digman MA, Caiolfa VR, Zamai M, Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys J. 2008;94(2):L14–16. PubMed PMC
Nakashima N, Yoshihara K, Tanaka F, Yagi K. Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase. J Biol Chem. 1980;255(11):5261–3. PubMed
Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev. 2012;79(1):4–18. PubMed PMC
Kuang W, Zhang J, Lan Z, Deepak R, Liu C, Ma Z, Cheng L, Zhao X, Meng X, Wang W, et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021;35(3): 109025. PubMed PMC
Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res Int. 2014;2014: 902953. PubMed PMC
Orgebin-Crist MC. Sperm maturation in rabbit epididymis. Nature. 1967;216(5117):816–8. PubMed
Rosenthal N, Brown S. The mouse ascending: perspectives for human-disease models. Nat Cell Biol. 2007;9(9):993–9. PubMed
Cinco R, Digman MA, Gratton E, Luderer U. Spatial characterization of bioenergetics and metabolism of primordial to preovulatory follicles in whole ex vivo murine ovary. Biol Reprod. 2016;95(6):129. PubMed PMC
Renaud O, Herbomel P, Kissa K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat Protoc. 2011;6(12):1897–904. PubMed
Cao R, Wallrabe H, Periasamy A. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength. J Biomed Opt. 2020;25(1):1–16. PubMed PMC
Ma N, Mochel NR, Pham PD, Yoo TY, Cho KWY, Digman MA. Label-free assessment of pre-implantation embryo quality by the Fluorescence Lifetime Imaging Microscopy (FLIM)-phasor approach. Sci Rep. 2019;9(1):13206. PubMed PMC
Walsh AJ, Mueller KP, Tweed K, Jones I, Walsh CM, Piscopo NJ, Niemi NM, Pagliarini DJ, Saha K, Skala MC. Classification of T-cell activation via autofluorescence lifetime imaging. Nat Biomed Eng. 2021;5(1):77–88. PubMed PMC
Stringari C, Wang H, Geyfman M, Crosignani V, Kumar V, Takahashi JS, Andersen B, Gratton E. In vivo single-cell detection of metabolic oscillations in stem cells. Cell Rep. 2015;10(1):1–7. PubMed PMC
Olaf Ronneberger PF, Thomas Brox: U-Net: convolutional networks for biomedical image segmentation. 2015. Preprint at: https://arxiv.org/abs/1505.04597.
Tourmente M, Rowe M, Gonzalez-Barroso MM, Rial E, Gomendio M, Roldan ER. Postcopulatory sexual selection increases ATP content in rodent spermatozoa. Evolution. 2013;67(6):1838–46. PubMed
Tourmente M, Villar-Moya P, Rial E, Roldan ER. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J Biol Chem. 2015;290(33):20613–26. PubMed PMC
Tourmente M, Villar-Moya P, Varea-Sanchez M, Luque-Larena JJ, Rial E, Roldan ER. Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: the role of sperm competition. Biol Reprod. 2015;93(3):64. PubMed
Albrechtova J, Albrecht T, Dureje L, Pallazola VA, Pialek J. Sperm morphology in two house mouse subspecies: do wild-derived strains and wild mice tell the same story? PLoS ONE. 2014;9(12): e115669. PubMed PMC
Gage MJ, Macfarlane CP, Yeates S, Ward RG, Searle JB, Parker GA. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol. 2004;14(1):44–7. PubMed
Birkhead TR, Martinez JG, Burke T, Froman DP. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc Biol Sci. 1999;266(1430):1759–64. PubMed PMC
Kahrl AF, Snook RR, Fitzpatrick JL. Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nat Commun. 2022;13(1):6809. PubMed PMC
Samplaski MK, Nangia AK. Adverse effects of common medications on male fertility. Nat Rev Urol. 2015;12(7):401–13. PubMed
Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26. PubMed PMC
Leung ETY, Lee CL, Tian X, Lam KKW, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Simulating nature in sperm selection for assisted reproduction. Nat Rev Urol. 2022;19(1):16–36. PubMed
Kusari F, Mihola O, Schimenti J, Trachtulec Z. Meiotic Epigenetic Factor PRDM9 Impacts Sperm Quality of Hybrid Mice. Reprod. 2020;160(1):53–64. PubMed
Mihola O, Kobets T, Krivankova K, Linhartova E, Gasic S, Schimenti JC, Trachtulec Z. Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints. Chromosoma. 2020;129(1):69–82. PubMed
Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66. PubMed PMC
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. PubMed PMC
Aitken RJ. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction. 2020;159(4):R189–201. PubMed
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–53. PubMed
Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36. PubMed
Almeida S, Rato L, Sousa M, Alves MG, Oliveira PF. Fertility and sperm quality in the aging male. Curr Pharm Des. 2017;23(30):4429–37. PubMed
Selvaratnam J, Robaire B. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Exp Gerontol. 2016;84:12–20. PubMed
Ozkosem B, Feinstein SI, Fisher AB, O’Flaherty C. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol. 2015;5:15–23. PubMed PMC
Paoli D, Pecora G, Pallotti F, Faja F, Pelloni M, Lenzi A, Lombardo F. Cytological and molecular aspects of the ageing sperm. Hum Reprod. 2019;34(2):218–27. PubMed
Cocuzza M, Athayde KS, Agarwal A, Sharma R, Pagani R, Lucon AM, Srougi M, Hallak J. Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology. 2008;71(3):490–4. PubMed
Iaffaldano N, Di Iorio M, Mannina L, Paventi G, Rosato MP, Cerolini S, Sobolev AP. Age-dependent changes in metabolic profile of turkey spermatozoa as assessed by NMR analysis. PLoS ONE. 2018;13(3): e0194219. PubMed PMC
Losano J, Angrimani D, Dalmazzo A, Rui BR, Brito MM, Mendes CM, Kawai G, Vannucchi CI, Assumpcao M, Barnabe VH, et al. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality. Reprod Domest Anim. 2017;52(2):289–97. PubMed
Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J. Human sperm steer with second harmonics of the flagellar beat. Nat Commun. 2017;8(1):1415. PubMed PMC
Becker W, Braun L, Suarez-Ibarrol R, Miernik A. Metabolic IMAGING BY SIMULTANEous FLIM of NAD(P)H and FAD. Current Directions in Biomedical Engineering. 2020;6(3):254–6.
Gregorova S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha). 2000;46(1):31–41. PubMed
Sun Y, Day RN, Periasamy A. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc. 2011;6(9):1324–40. PubMed PMC
Durmaz AR, Muller M, Lei B, Thomas A, Britz D, Holm EA, Eberl C, Mucklich F, Gumbsch P. A deep learning approach for complex microstructure inference. Nat Commun. 2021;12(1):6272. PubMed PMC
Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Bogurcu-Seidel N, Seidel S, Sleiman K, et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell. 2019;179(7):1661–1676 e1619. PubMed PMC
Nygate YN, Levi M, Mirsky SK, Turko NA, Rubin M, Barnea I, Dardikman-Yoffe G, Haifler M, Shalev A, Shaked NT. Holographic virtual staining of individual biological cells. Proc Natl Acad Sci U S A. 2020;117(17):9223–31. PubMed PMC
Manifold B, Men S, Hu R, Fu D. A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. Nat Mach Intell. 2021;3:306–15. PubMed PMC
Glastonbury CA, Pulit SL, Honecker J, Censin JC, Laber S, Yaghootkar H, Rahmioglu N, Pastel E, Kos K, Pitt A, et al. Machine learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits. PLoS Comput Biol. 2020;16(8): e1008044. PubMed PMC
Kingma DP, Ba J: Adam: a method for stochastic optimization. 2014. Preprint at: https://arxiv.org/abs/1412.6980.
He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. IEEE International Conference on Computer Vision (ICCV). 2015:1026-1034.
Abadi M. TensorFlow: learning functions at scale. ACM SIGPLAN Notices. 2016;51(9):1–1.
Kuhn HW: The Hungarian method for the assignment problem. Naval research logistics quarterly. 1955.
Soltanian-Zadeh S, Sahingur K, Blau S, Gong Y, Farsiu S. Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning. Proc Natl Acad Sci U S A. 2019;116(17):8554–63. PubMed PMC
Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P, et al. CaImAn an open source tool for scalable calcium imaging data analysis. Elife. 2019;8:8. PubMed PMC
Ranjit S, Malacrida L, Jameson DM, Gratton E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc. 2018;13(9):1979–2004. PubMed
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.
Midway S, Robertson M, Flinn S, Kaller M. Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test. PeerJ. 2020;8: e10387. PubMed PMC