Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health

. 2021 Nov 21 ; 26 (22) : . [epub] 20211121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834128

Grantová podpora
PROFISH (CZ.02.1.01 / 0.0 / 0.0 / 16_019 / 0000869) University of South Bohemia in České Budějovice
CENAKVA project (LM2018099) Ministry of Education, Youth and Sports of the Czech Republic

Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.

Zobrazit více v PubMed

Okhuarobo A., Ehizogie Falodun J., Erharuyi O., Imieje V., Falodun A., Langer P. Harnessing the medicinal properties of andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis. 2014;4:213–222. doi: 10.1016/S2222-1808(14)60509-0. DOI

Sinha R.K., Sharma S.N., Verma S.S., Zha J. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the andrographis paniculata. Acta Physiol. Plant. 2018;40:1–11.

Shaik H.A., Mishra A., Sehnal F. Silk recycling in larvae of the wax moth, galleria mellonella (lepidoptera: Pyralidae) Eur. J. Entomol. 2017;114:61–65. doi: 10.14411/eje.2017.009. DOI

Shaik H.A., Mishra A., Sehadová H., Kodrík D. Responses of sericotropin to toxic and pathogenic challenges: Possible role in defense of the wax moth galleria mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;227:108633. doi: 10.1016/j.cbpc.2019.108633. PubMed DOI

Shaik H.A., Mishra A., Hussein H.M., Skoková Habuštová O., Sehnal F. Competitive interactions between entomopathogenic nematodes and parasitoid venom. J. Appl. Entomol. 2020;144:481–490. doi: 10.1111/jen.12750. DOI

Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-Ketoamide inhibitors. Science. 2020;368:409–412. doi: 10.1126/science.abb3405. PubMed DOI PMC

Banerjee S., Kar A., Mukherjee P.K., Haldar P.K., Sharma N., Katiyar C.K. Immunoprotective potential of ayurvedic herb kalmegh (andrographis paniculata) against respiratory viral infections—LC-MS/MS and network pharmacology analysis. Phytochem. Anal. 2021;32:629–639. doi: 10.1002/pca.3011. PubMed DOI

Lim J.C.W., Chan T.K., Ng D.S.W., Sagineedu S.R., Stanslas J., Wong W.S.F. Andrographolide and its analogues: Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol. 2012;39:300–310. doi: 10.1111/j.1440-1681.2011.05633.x. PubMed DOI

Dai Y., Chen S.-R., Chai L., Zhao J., Wang Y., Wang Y. Overview of pharmacological activities of and its major compound andrographolide. Crit. Rev. Food Sci. Nutr. 2019;59:S17–S29. doi: 10.1080/10408398.2018.1501657. PubMed DOI

Worasuttayangkurn L., Nakareangrit W., Kwangjai J., Sritangos P., Pholphana N., Watcharasit P., Rangkadilok N., Thiantanawat A., Satayavivad J. Acute oral toxicity evaluation of standardized first true leaf ethanolic extract. Toxicol. Rep. 2019;6:426–430. doi: 10.1016/j.toxrep.2019.05.003. PubMed DOI PMC

Sinha R.K., Jiang F., Eudes F. TALE protein mediated overexpression of embryogenesis related marker genes in wheat microspores. S. Afr. J. Bot. 2021;138:50–56. doi: 10.1016/j.sajb.2020.12.004. DOI

Hua Z., Frohlich K.M., Zhang Y., Feng X., Zhang J., Shen L. Andrographolide inhibits intracellular chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells. Pathog. Dis. 2015;73:1–11. doi: 10.1093/femspd/ftu022. PubMed DOI PMC

Calabrese C., Berman S.H., Babish J.G., Ma X., Shinto L., Dorr M., Wells K., Wenner C.A., Standish L.J. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother. Res. 2000;14:333–338. doi: 10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D. PubMed DOI

Seubsasana S., Pientong C., Ekalaksananan T., Thongchai S., Aromdee C. A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med. Chem. 2011;7:237–244. doi: 10.2174/157340611795564268. PubMed DOI

Chen H., Ma Y.B., Huang X.Y., Geng C.A., Zhao Y., Wang L.J., Guo R.H., Liang W.J., Zhang X.M., Chen J.J. Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis b virus agents. Bioorg. Med. Chem. Lett. 2014;24:2353–2359. doi: 10.1016/j.bmcl.2014.03.060. PubMed DOI

Lee J.C., Tseng C.K., Young K.C., Sun H.Y., Wang S.W., Chen W.C., Lin C.K., Wu Y.H. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 Pathway in human hepatoma cells. Br. J. Pharmacol. 2014;171:237–252. doi: 10.1111/bph.12440. PubMed DOI PMC

Chen J.X., Xue H.J., Ye W.C., Fang B.H., Liu Y.H., Yuan S.H., Yu P., Wang Y.Q. Activity of andrographolide and its derivatives against Influenza virus in vivo and in vitro. Biol. Pharm. Bull. 2009;32:1385–1391. doi: 10.1248/bpb.32.1385. PubMed DOI

Li F., Khanom W., Sun X., Paemanee A., Roytrakul S., Wang D., Smith D.R., Zhou G.-C. Andrographolide and its 14-aryloxy analogues inhibit zika and dengue virus infection. Molecules. 2020;25:5037. doi: 10.3390/molecules25215037. PubMed DOI PMC

Gupta S., Mishra K.P., Kumar B., Singh S.B., Ganju L. Andrographolide mitigates unfolded protein response pathway and apoptosis involved in chikungunya virus infection. Comb. Chem. High Throughput Screen. 2021;24:849–859. doi: 10.2174/1386207323999200818165029. PubMed DOI

Edwin E.S., Vasantha-Srinivasan P., Senthil-Nathan S., Thanigaivel A., Ponsankar A., Pradeepa V., Selin-Rani S., Kalaivani K., Hunter W.B., Abdel-Megeed A., et al. Anti-dengue efficacy of bioactive andrographolide from andrographis paniculata (lamiales: Acanthaceae) against the Primary dengue vector aedes aegypti (diptera: Culicidae) Acta Trop. 2016;163:167–178. doi: 10.1016/j.actatropica.2016.07.009. PubMed DOI

Ramalingam S., Karupannan S., Padmanaban P., Vijayan S., Sheriff K., Palani G., Krishnasamy K.K. Anti-dengue activity of Extracts and quantification of dengue viral inhibition by SYBR green reverse transcription polymerase chain reaction. AYU. 2018;39:87–91. PubMed PMC

Kaushik S., Dar L., Kaushik S., Yadav J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 Proteinase from andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol. 2021;267:113541. doi: 10.1016/j.jep.2020.113541. PubMed DOI

Enmozhi S.K., Raja K., Sebastine I., Joseph J. Andrographolide as a Potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn. 2021;39:3092–3098. doi: 10.1080/07391102.2020.1760136. PubMed DOI PMC

Sharma A., Vora J., Patel D., Sinha S., Jha P.C., Shrivastava N. Identification of natural inhibitors against prime targets of SARS-CoV-2 Using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn. 2020:1–16. doi: 10.1080/07391102.2020.1846624. PubMed DOI PMC

Sukardiman M.E., Fadhil Pratama M.R., Poerwono H., Siswodihardjo S. The Coronavirus disease 2019 main protease inhibitor from (Burm. F) ness. J. Adv. Pharm. Technol. Res. 2020;11:157–162. doi: 10.4103/japtr.JAPTR_84_20. PubMed DOI PMC

Gao F., Liu X., Shen Z., Jia X., He H., Gao J., Wu J., Jiang C., Zhou H., Wang Y. Andrographolide sulfonate attenuates acute lung injury by reducing expression of myeloperoxidase and neutrophil-derived proteases in mice. Front. Physiol. 2018;9:939. doi: 10.3389/fphys.2018.00939. PubMed DOI PMC

Wen L., Xia N., Chen X., Li Y., Hong Y., Liu Y., Wang Z., Liu Y. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur. J. Pharmacol. 2014;740:421–427. doi: 10.1016/j.ejphar.2014.06.053. PubMed DOI

Malik Z., Parveen R., Parveen B., Zahiruddin S., Aasif Khan M., Khan A., Massey S., Ahmad S., Husain S.A. Anticancer potential of andrographolide from andrographis paniculata (Burm.f.) nees and its mechanisms of action. J. Ethnopharmacol. 2021;272:113936. doi: 10.1016/j.jep.2021.113936. PubMed DOI

Geng J., Liu W., Gao J., Jiang C., Fan T., Sun Y., Qin Z.-H., Xu Q., Guo W., Gao J. Andrographolide alleviates parkinsonism in MPTP-PD Mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br. J. Pharmacol. 2019;176:4574–4591. doi: 10.1111/bph.14823. PubMed DOI PMC

Plešingerová H., Janovská P., Mishra A., Smyčková L., Poppová L., Libra A., Plevová K., Ovesná P., Radová L., Doubek M., et al. Expression of COBLL1 encoding novel ROR1 Binding partner is robust predictor of survival in chronic lymphocytic leukemia. Haematologica. 2018;103:313–324. doi: 10.3324/haematol.2017.178699. PubMed DOI PMC

Lai Y.H., Yu S.L., Chen H.Y., Wang C.C., Chen H.W., Chen J.J.W. The HLJ1-Targeting drug screening identified Chinese Herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis. 2013;34:1069–1080. doi: 10.1093/carcin/bgt005. PubMed DOI

Hidalgo M.A., Romero A., Figueroa J., Cortés P., Concha I.I., Hancke J.L., Burgos R.A. Andrographolide interferes with Binding of nuclear factor-kappaB to DNA in HL-60-Derived neutrophilic cells. Br. J. Pharmacol. 2005;144:680–686. doi: 10.1038/sj.bjp.0706105. PubMed DOI PMC

Chen H.W., Lin A.H., Chu H.C., Li C.C., Tsai C.W., Chao C.Y., Wang C.J., Lii C.K., Liu K.L. Inhibition of TNF-α-induced Inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. J. Nat. Prod. 2011;74:2408–2413. doi: 10.1021/np200631v. PubMed DOI

Yen T.L., Chen R.J., Jayakumar T., Lu W.J., Hsieh C.Y., Hsu M.J., Yang C.H., Chang C.C., Lin Y.K., Lin K.H., et al. Andrographolide stimulates p38 Mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in Primary cerebral endothelial cells for definite protection against ischemic stroke in rats. Transl. Res. 2016;170:57–72. doi: 10.1016/j.trsl.2015.12.002. PubMed DOI

Iruretagoyena M.I., Tobar J.A., González P.A., Sepúlveda S.E., Figueroa C.A., Burgos R.A., Hancke J.L., Kalergis A.M. Andrographolide interferes with T Cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J. Pharmacol. Exp. Ther. 2005;312:366–372. doi: 10.1124/jpet.104.072512. PubMed DOI

Zhang C., Gui L., Xu Y., Wu T., Liu D. Preventive Effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by Inducing immune tolerance. Int. Immunopharmacol. 2013;16:451–456. doi: 10.1016/j.intimp.2013.05.002. PubMed DOI

Su H., Mo J., Ni J., Ke H., Bao T., Xie J., Xu Y., Xie L., Chen W. Andrographolide Exerts antihyperglycemic effect through Strengthening intestinal barrier function and increasing microbial composition of Akkermansia Muciniphila. Oxid. Med. Cell. Longev. 2020;2020:6538930. doi: 10.1155/2020/6538930. PubMed DOI PMC

Gherardelli C., Cisternas P., Gutiérrez J., Martinez M., Inestrosa N.C. Andrographolide Restores glucose uptake in rat hippocampal neurons. J. Neurochem. 2021;157:1222–1233. doi: 10.1111/jnc.15229. PubMed DOI

Anantharaman S., Rego R., Muthakka M., Anties T., Krishna H. Andrographis paniculata-mediated synthesis of silver nanoparticles: Antimicrobial properties and computational studies. SN Appl. Sci. 2020;2:1618. doi: 10.1007/s42452-020-03394-7. DOI

Roy P., Das S., Auddy R.G., Saha A., Mukherjee A. Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm. Res. 2013;30:1252–1262. doi: 10.1007/s11095-012-0964-5. PubMed DOI

Roy P., Das S., Mondal A., Chatterji U., Mukherjee A. Nanoparticle engineering enhances anticancer efficacy of andrographolide in MCF-7 Cells and mice bearing EAC. Curr. Pharm. Biotechnol. 2012;13:2669–2681. doi: 10.2174/138920112804724855. PubMed DOI

Sanati P., Chua L.S., Nasiri R., Hashemi S.-S. Nanoencapsulation of Andrographolide rich extract for the inhibition of cervical and neuroblastoma cancer cells. J. Biomed. Nanotechnol. 2020;16:1370–1380. doi: 10.1166/jbn.2020.2973. PubMed DOI

Li H., Qu X., Qian W., Song Y., Wang C., Liu W. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Dis. 2020;00:1–8. doi: 10.1111/odi.13751. PubMed DOI

Ahiwale R.J., Chellampillai B., Pawar A.P. Investigation of 1,2-Dimyristoyl-Sn-Glycero-3-Phosphoglycerol-Sodium (DMPG-Na) Lipid with various metal cations in nanocochleate preformulation: Application for Andrographolide oral delivery in cancer therapy. AAPS Pharm. Sci. Tech. 2020;21:279. doi: 10.1208/s12249-020-01801-1. PubMed DOI

Guan S.P., Tee W., Ng D.S.W., Chan T.K., Peh H.Y., Ho W.E., Cheng C., Mak J.C., Wong W.S.F. Andrographolide protects against cigarette smoke-induced Oxidative lung injury via augmentation of Nrf2 activity. Br. J. Pharmacol. 2013;168:1707–1718. doi: 10.1111/bph.12054. PubMed DOI PMC

Chakraborty S., Ehsan I., Mukherjee B., Mondal L., Roy S., Saha K.D., Paul B., Debnath M.C., Bera T. Therapeutic potential of Andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine. 2019;20:102006. doi: 10.1016/j.nano.2019.04.009. PubMed DOI

Chen P., Zeng Z., Du H. Establishment and Validation of a drug-target microarray for SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020;530:4–9. doi: 10.1016/j.bbrc.2020.05.217. PubMed DOI PMC

Sa-ngiamsuntorn K., Suksatu A., Pewkliang Y., Thongsri P., Kanjanasirirat P., Manopwisedjaroen S., Charoensutthivarakul S., Wongtrakoongate P., Pitiporn S., Khemawoot P., et al. Anti-SARS-CoV-2 Activity of andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod. 2021;84:1261–1270. doi: 10.1021/acs.jnatprod.0c01324. PubMed DOI

Rehan M., Ahmed F., Howladar S.M., Refai M.Y., Baeissa H.M., Zughaibi T.A., Kedwa K.M., Jamal M.S. A Computational Approach identified andrographolide as a potential drug for suppressing COVID-19-Induced cytokine storm. Front. Immunol. 2021;12:648250. doi: 10.3389/fimmu.2021.648250. PubMed DOI PMC

Srivastava N., Garg P., Srivastava P., Seth P.K. A Molecular dynamics simulation study of the ACE2 Receptor with screened Natural inhibitors to identify novel drug candidate against COVID-19. PeerJ. 2021;9:e11171. doi: 10.7717/peerj.11171. PubMed DOI PMC

Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., et al. Association of Cardiac injury with Mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950. PubMed DOI PMC

Junior A.G., Tolouei S.E.L., Dos Reis Lívero F.A., Gasparotto F., Boeing T., de Souza P. Natural Agents modulating ACE-2: A Review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des. 2021;27:1588–1596. doi: 10.2174/1381612827666210114150607. PubMed DOI

Alazmi M., Motwalli O. Molecular Basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through Docking, characterization, and molecular dynamics for natural drug candidates. J. Mol. Model. 2020;26:338. doi: 10.1007/s00894-020-04599-8. PubMed DOI PMC

Rajagopal K., Varakumar P., Baliwada A., Byran G. Activity of Phytochemical constituents of curcuma longa (turmeric) and andrographis paniculata against Coronavirus (COVID-19): An in silico approach. Futur. J. Pharm. Sci. 2020;6:104. doi: 10.1186/s43094-020-00126-x. PubMed DOI PMC

Li X., Yu J., Zhang Z., Ren J., Peluffo A.E., Zhang W., Zhao Y., Wu J., Yan K., Cohen D., et al. Network bioinformatics Analysis provides insight into drug repurposing for COVID-19. Med. Drug Discov. 2021;10:100090. doi: 10.1016/j.medidd.2021.100090. PubMed DOI PMC

Zhang X.Y., Lv L., Zhou Y.L., Xie L.D., Xu Q., Zou X.F., Ding Y., Tian J., Fan J.L., Fan H.W., et al. Efficacy and safety of xiyanping injection in the treatment of COVID-19: A Multicenter, prospective, open-label and randomized controlled trial. Phytother. Res. 2021;35:4401–4410. doi: 10.1002/ptr.7141. PubMed DOI PMC

Jiang M., Sheng F., Zhang Z., Ma X., Gao T., Fu C., Li P. Andrographis paniculata (Burm.f.) Nees and its major constituent Andrographolide as potential antiviral agents. J. Ethnopharmacol. 2021;272:113954. doi: 10.1016/j.jep.2021.113954. PubMed DOI

Zhang H., Li S., Si Y., Xu H. Andrographolide and Its derivatives: Current Achievements and future perspectives. Eur. J. Med. Chem. 2021;224:113710. doi: 10.1016/j.ejmech.2021.113710. PubMed DOI

Murugan N.A., Pandian C.J., Jeyakanthan J. Computational Investigation on phytochemicals to evaluate their potency against SARS-CoV-2 in Comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn. 2021;39:4415–4426. doi: 10.1080/07391102.2020.1777901. PubMed DOI PMC

Ekalaksananan T., Sookmai W., Fangkham S., Pientong C., Aromdee C., Seubsasana S., Kongyingyoes B. Activity of andrographolide and its derivatives on HPV16 pseudovirus infection and viral Oncogene expression in cervical carcinoma cells. Nutr. Cancer. 2015;67:687–696. doi: 10.1080/01635581.2015.1019630. PubMed DOI

Khanal P., Dey Y.N., Patil R., Chikhale R., Wanjari M.M., Gurav S.S., Patil B.M., Srivastava B., Gaidhani S.N. Combination of System biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Adv. 2021;11:5065–5079. doi: 10.1039/D0RA10529E. PubMed DOI PMC

Aromdee C. Modifications of Andrographolide to increase some biological activities: A patent review (2006–2011) Expert Opin. Ther. Pat. 2012;22:169–180. doi: 10.1517/13543776.2012.661718. PubMed DOI

Chao W.W., Lin B.-F. Isolation and identification of bioactive compounds in andrographis paniculata (Chuanxinlian) Chin. Med. 2010;5:1–17. doi: 10.1186/1749-8546-5-17. PubMed DOI PMC

Aromdee C., Suebsasana S., Ekalaksananan T., Pientong C., Thongchai S. Stage of Action of naturally occurring andrographolides and Their semisynthetic analogues against herpes simplex virus type 1 in vitro. Planta Med. 2011;77:915–921. doi: 10.1055/s-0030-1250659. PubMed DOI

Tang C., Liu Y., Wang B., Gu G., Yang L., Zheng Y., Qian H., Huang W. Synthesis and Biological evaluation of andrographolide Derivatives as potent anti-HIV agents. Arch. Pharm. 2012;345:647–656. doi: 10.1002/ardp.201200008. PubMed DOI

Uttekar M.M., Das T., Pawar R.S., Bhandari B., Menon V., Nutan, Gupta S.K., Bhat S.V. Anti-HIV Activity of semisynthetic Derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem. 2012;56:368–374. doi: 10.1016/j.ejmech.2012.07.030. PubMed DOI

Li F., Lee E.M., Sun X., Wang D., Tang H., Zhou G.-C. Design, Synthesis and discovery of andrographolide derivatives against zika virus infection. Eur. J. Med. Chem. 2020;187:111925. doi: 10.1016/j.ejmech.2019.111925. PubMed DOI PMC

Priengprom T., Ekalaksananan T., Kongyingyoes B., Suebsasana S., Aromdee C., Pientong C. Synergistic effects of acyclovir and 3,19-Isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement. Altern. Med. 2015;15:56. doi: 10.1186/s12906-015-0591-x. PubMed DOI PMC

Yuan L., Zhang C., Sun H., Liu Q., Huang J., Sheng L., Lin B., Wang J., Chen L. The Semi-synthesis of novel andrographolide analogues and Anti-Influenza Virus activity evaluation of their derivatives. Bioorg. Med. Chem. Lett. 2016;26:769–773. doi: 10.1016/j.bmcl.2015.12.100. PubMed DOI

Wang D., Guo H., Chang J., Wang D., Liu B., Gao P., Wei W. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front. Microbiol. 2018;9:2407. doi: 10.3389/fmicb.2018.02407. PubMed DOI PMC

Cai W., Wen H., Zhou Q., Wu L., Chen Y., Zhou H., Jin M. 14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Res. 2020;181:104885. doi: 10.1016/j.antiviral.2020.104885. PubMed DOI

Patil R., Jain V. Andrographolide: A review of analytical methods. J. Chromatogr. Sci. 2021;59:191–203. doi: 10.1093/chromsci/bmaa091. PubMed DOI

Pancham Y., Patil N., Girish B., Mannur V. Development and validation of analytical method for determination of andrographolide in Bulk powder. Int. J. Pharm. Res. Health Sci. 2019;7:2899–2903. doi: 10.21276/ijprhs.2019.01.08. DOI

Pundarikakshudu K., Shah K., Trivedi P., Shivprakash K. Spectrophotometric determination of andrographolides in Andrographis Paniculata nees and its formulation. Indian J. Pharm. Sci. 2007;69:457. doi: 10.4103/0250-474X.34564. DOI

Indrati O., Martien R., Rohman A., Nugroho A.K. Employment of ATR-FTIR and HPLC-UV method for detection and quantification of andrographolide. Int. J. Appl. Pharm. 2018;10:135. doi: 10.22159/ijap.2018v10i6.28691. DOI

Shivali G., Praful L., Vijay G. A Validated Fourier transform infrared spectroscopy method for quantification of total lactones in inula racemosa and andrographis paniculata. Phytochem. Anal. 2012;23:171–176. doi: 10.1002/pca.1339. PubMed DOI

Jiang Z., Hao Z., Wu Q., Li Y., Liu H., Yan L. A novel flow-injection chemiluminescence method for determination of andrographolide in andrographis tablets. Drug Test. Anal. 2013;5:340–345. doi: 10.1002/dta.1346. PubMed DOI

Zhao Q., Ding J., Jin H., Ding L., Ren N. A Green method using a micellar system for determination of andrographolide and dehydroandrographolide in human plasma. J. Chromatogr. Sci. 2013;51:341–348. doi: 10.1093/chromsci/bms146. PubMed DOI

Stanković D.M., Samphao A., Kuzmanović D., Kalcher K. Novel electroanalyical method for the determination of andrographolide from andrographis paniculata extract and urine samples. Microchem. J. 2015;122:16–19. doi: 10.1016/j.microc.2015.04.005. DOI

Yanfang Z., Xingping L., Zongde Z., Liren C., Yongmin L. Simultaneous determination of andrographolide and dehydroandrographolide in andrographis paniculata and Chinese medicinal preparations by microemulsion electrokinetic chromatography. J. Pharm. Biomed. Anal. 2006;40:157–161. doi: 10.1016/j.jpba.2005.04.003. PubMed DOI

Zhao J., Yang G., Liu H., Wang D., Song X., Chen Y. Determination of andrographolide, deoxyandrographolide and neoandrographolide in the Chinese herb andrographis paniculata by micellar electrokinetic capillary chromatography. Phytochem. Anal. 2002;13:222–227. doi: 10.1002/pca.644. PubMed DOI

Qizhen D., Jerz G., Winterhalter P. Separation of andrographolide and neoandrographolide from the leaves of andrographis Paniculata using high-speed counter-current chromatography. J. Chromatogr. A. 2003;984:147–151. PubMed

Jain P.K., Ravichandran V., Jain P.K., Agrawal R.K. High-performance thin layer chromatography method for estimation of andrographolide in herbal extract and polyherbal formulations. J. Saudi Chem. Soc. 2010;14:383–389. doi: 10.1016/j.jscs.2010.03.001. DOI

Chavan A.K., Nirmal S.A., Pattan S.R. Development and validation of HPTLC method to detect curcumin and gallic acid in polyherbal microencapsulated formulation. J. Liq. Chromatogr. Relat. Technol. 2015;38:1213–1217. doi: 10.1080/10826076.2015.1032416. DOI

Phattanawasin P., Burana-Osot J., Sotanaphun U., Kumsum A. Stability-indicating TLC—image analysis method for determination of andrographolide in bulk drug and andrographis paniculata formulations. Acta Chromatogr. 2016;28:525–540. doi: 10.1556/1326.2016.28.4.12. DOI

Syukri Y., Afetma D.W., Sirin M., Fajri R., Ningrum A.D.K., Setiawan S.D., Wibowo A. Validation of a simple HPLC-UV method for the quantification of andrographolide in self-nano emulsifying drug delivery system (Snedds) for dissolution study. Int. J. Drug Deliv. Technol. 2017;7:239–243.

Bhope S.G., Kuber V.V., Nagore D.H., Gaikwad P.S., Patil M.J. Development and validation of RP-HPLC method for simultaneous analysis of andrographolide, phyllanthin, and hypophyllanthin from herbal hepatoprotective formulation. Acta Chromatogr. 2013;25:159–169. doi: 10.1556/AChrom.25.2013.1.10. DOI

Kotagiri R., Kanaaujia A., Singh P., Thakur D. Validated RP-HPLC method for the quantification of andrographolide in toxiroak premix, a polyherbal mycotoxin inhibitor. Int. J. Pharm. Sci. Res. 2013;4:2623–2628.

Suo X.B., Zhang H., Wang Y.Q. HPLC Determination of Andrographolide in Rat Whole Blood: Study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed. Chromatogr. 2007;21:730–734. doi: 10.1002/bmc.812. PubMed DOI

Levita J., Juwita T., Ramadhani S., Saptarini N., Mutakin M. Chromatogram profiles of andrographolide in A23187-induced New Zealand rabbit’s urine and faeces. J. App. Pharm. Sci. 2017;7:156–159. doi: 10.7324/JAPS.2017.70121. DOI

Chandra P., Kannujia R., Pandey R., Shukla S., Bahadur L., Pal M., Kumar B. Rapid quantitative analysis of multi-components in andrographis paniculata using UPLC-QqQLIT-MS/MS: Application to soil sodicity and organic farming. Ind. Crops Prod. 2016;83:423–430. doi: 10.1016/j.indcrop.2015.12.091. DOI

Bera R., Ahmed S.K.M., Sarkar L., Sen T., Karmakar S. Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method. Pharm. Biol. 2014;52:321–329. doi: 10.3109/13880209.2013.836544. PubMed DOI

Pholphana N., Panomvana D., Rangkadilok N., Suriyo T., Ungtrakul T., Pongpun W., Thaeopattha S., Satayavivad J. A simple and sensitive LC-MS/MS method for determination of four major active diterpenoids from andrographis paniculata in human plasma and its application to a pilot study. Planta Med. 2016;82:113–120. doi: 10.1055/s-0035-1558115. PubMed DOI

Nugraha R.V., Ridwansyah H., Ghozali M., Khairani A.F., Atik N. Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons. Evid. Based Complementary Altern. Med. 2020;2020:1–12. doi: 10.1155/2020/2560645. PubMed DOI PMC

Lim X.Y., Chan J.S.W., Tan T.Y.C., Teh B.P., Razak M.R.M., Mohamad S., Mohamed A.F.S. Andrographis paniculata (Burm. F.) wall. ex nees, andrographolide, and andrographolide analogues as SARS-CoV-2 antivirals? A rapid review. Nat. Prod. Commum. 2021;16 doi: 10.1177/1934578X211016610. DOI

Çubuk H., Özbİl M. Comparison of clinically approved molecules on SARS-CoV-2 drug target proteins: A molecular docking study. Turk. J. Chem. 2021;45:35–41. doi: 10.3906/kim-2008-35. PubMed DOI PMC

Uzunova K., Filipova E., Pavlova V., Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 2020;131:110668. doi: 10.1016/j.biopha.2020.110668. PubMed DOI PMC

Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 2020;10:766–788. doi: 10.1016/j.apsb.2020.02.008. PubMed DOI PMC

Basak A., Li S., Banik U.K. A new combination drugs using andrographolide derived natural prod-559 uct restomune for management of HIV. Case Rep. Clin. Pract. Rev. 2003;4:223–233.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...