Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PROFISH (CZ.02.1.01 / 0.0 / 0.0 / 16_019 / 0000869)
University of South Bohemia in České Budějovice
CENAKVA project (LM2018099)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34834128
PubMed Central
PMC8622020
DOI
10.3390/molecules26227036
PII: molecules26227036
Knihovny.cz E-zdroje
- Klíčová slova
- Andrographis paniculata (AP), COVID-19 epidemic, andrographolide (AGL), anti-manic, anti-microbial, herbal-chemo remedy, immune booster,
- MeSH
- antivirové látky chemická syntéza chemie farmakologie terapeutické užití MeSH
- diterpeny chemická syntéza chemie farmakologie terapeutické užití MeSH
- imunitní systém účinky léků MeSH
- léčivé rostliny chemie imunologie MeSH
- lidé MeSH
- virové nemoci farmakoterapie MeSH
- zdraví MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- andrographolide MeSH Prohlížeč
- antivirové látky MeSH
- diterpeny MeSH
Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.
Zobrazit více v PubMed
Okhuarobo A., Ehizogie Falodun J., Erharuyi O., Imieje V., Falodun A., Langer P. Harnessing the medicinal properties of andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis. 2014;4:213–222. doi: 10.1016/S2222-1808(14)60509-0. DOI
Sinha R.K., Sharma S.N., Verma S.S., Zha J. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the andrographis paniculata. Acta Physiol. Plant. 2018;40:1–11.
Shaik H.A., Mishra A., Sehnal F. Silk recycling in larvae of the wax moth, galleria mellonella (lepidoptera: Pyralidae) Eur. J. Entomol. 2017;114:61–65. doi: 10.14411/eje.2017.009. DOI
Shaik H.A., Mishra A., Sehadová H., Kodrík D. Responses of sericotropin to toxic and pathogenic challenges: Possible role in defense of the wax moth galleria mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;227:108633. doi: 10.1016/j.cbpc.2019.108633. PubMed DOI
Shaik H.A., Mishra A., Hussein H.M., Skoková Habuštová O., Sehnal F. Competitive interactions between entomopathogenic nematodes and parasitoid venom. J. Appl. Entomol. 2020;144:481–490. doi: 10.1111/jen.12750. DOI
Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-Ketoamide inhibitors. Science. 2020;368:409–412. doi: 10.1126/science.abb3405. PubMed DOI PMC
Banerjee S., Kar A., Mukherjee P.K., Haldar P.K., Sharma N., Katiyar C.K. Immunoprotective potential of ayurvedic herb kalmegh (andrographis paniculata) against respiratory viral infections—LC-MS/MS and network pharmacology analysis. Phytochem. Anal. 2021;32:629–639. doi: 10.1002/pca.3011. PubMed DOI
Lim J.C.W., Chan T.K., Ng D.S.W., Sagineedu S.R., Stanslas J., Wong W.S.F. Andrographolide and its analogues: Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol. 2012;39:300–310. doi: 10.1111/j.1440-1681.2011.05633.x. PubMed DOI
Dai Y., Chen S.-R., Chai L., Zhao J., Wang Y., Wang Y. Overview of pharmacological activities of and its major compound andrographolide. Crit. Rev. Food Sci. Nutr. 2019;59:S17–S29. doi: 10.1080/10408398.2018.1501657. PubMed DOI
Worasuttayangkurn L., Nakareangrit W., Kwangjai J., Sritangos P., Pholphana N., Watcharasit P., Rangkadilok N., Thiantanawat A., Satayavivad J. Acute oral toxicity evaluation of standardized first true leaf ethanolic extract. Toxicol. Rep. 2019;6:426–430. doi: 10.1016/j.toxrep.2019.05.003. PubMed DOI PMC
Sinha R.K., Jiang F., Eudes F. TALE protein mediated overexpression of embryogenesis related marker genes in wheat microspores. S. Afr. J. Bot. 2021;138:50–56. doi: 10.1016/j.sajb.2020.12.004. DOI
Hua Z., Frohlich K.M., Zhang Y., Feng X., Zhang J., Shen L. Andrographolide inhibits intracellular chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells. Pathog. Dis. 2015;73:1–11. doi: 10.1093/femspd/ftu022. PubMed DOI PMC
Calabrese C., Berman S.H., Babish J.G., Ma X., Shinto L., Dorr M., Wells K., Wenner C.A., Standish L.J. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother. Res. 2000;14:333–338. doi: 10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D. PubMed DOI
Seubsasana S., Pientong C., Ekalaksananan T., Thongchai S., Aromdee C. A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med. Chem. 2011;7:237–244. doi: 10.2174/157340611795564268. PubMed DOI
Chen H., Ma Y.B., Huang X.Y., Geng C.A., Zhao Y., Wang L.J., Guo R.H., Liang W.J., Zhang X.M., Chen J.J. Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis b virus agents. Bioorg. Med. Chem. Lett. 2014;24:2353–2359. doi: 10.1016/j.bmcl.2014.03.060. PubMed DOI
Lee J.C., Tseng C.K., Young K.C., Sun H.Y., Wang S.W., Chen W.C., Lin C.K., Wu Y.H. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 Pathway in human hepatoma cells. Br. J. Pharmacol. 2014;171:237–252. doi: 10.1111/bph.12440. PubMed DOI PMC
Chen J.X., Xue H.J., Ye W.C., Fang B.H., Liu Y.H., Yuan S.H., Yu P., Wang Y.Q. Activity of andrographolide and its derivatives against Influenza virus in vivo and in vitro. Biol. Pharm. Bull. 2009;32:1385–1391. doi: 10.1248/bpb.32.1385. PubMed DOI
Li F., Khanom W., Sun X., Paemanee A., Roytrakul S., Wang D., Smith D.R., Zhou G.-C. Andrographolide and its 14-aryloxy analogues inhibit zika and dengue virus infection. Molecules. 2020;25:5037. doi: 10.3390/molecules25215037. PubMed DOI PMC
Gupta S., Mishra K.P., Kumar B., Singh S.B., Ganju L. Andrographolide mitigates unfolded protein response pathway and apoptosis involved in chikungunya virus infection. Comb. Chem. High Throughput Screen. 2021;24:849–859. doi: 10.2174/1386207323999200818165029. PubMed DOI
Edwin E.S., Vasantha-Srinivasan P., Senthil-Nathan S., Thanigaivel A., Ponsankar A., Pradeepa V., Selin-Rani S., Kalaivani K., Hunter W.B., Abdel-Megeed A., et al. Anti-dengue efficacy of bioactive andrographolide from andrographis paniculata (lamiales: Acanthaceae) against the Primary dengue vector aedes aegypti (diptera: Culicidae) Acta Trop. 2016;163:167–178. doi: 10.1016/j.actatropica.2016.07.009. PubMed DOI
Ramalingam S., Karupannan S., Padmanaban P., Vijayan S., Sheriff K., Palani G., Krishnasamy K.K. Anti-dengue activity of Extracts and quantification of dengue viral inhibition by SYBR green reverse transcription polymerase chain reaction. AYU. 2018;39:87–91. PubMed PMC
Kaushik S., Dar L., Kaushik S., Yadav J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 Proteinase from andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol. 2021;267:113541. doi: 10.1016/j.jep.2020.113541. PubMed DOI
Enmozhi S.K., Raja K., Sebastine I., Joseph J. Andrographolide as a Potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn. 2021;39:3092–3098. doi: 10.1080/07391102.2020.1760136. PubMed DOI PMC
Sharma A., Vora J., Patel D., Sinha S., Jha P.C., Shrivastava N. Identification of natural inhibitors against prime targets of SARS-CoV-2 Using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn. 2020:1–16. doi: 10.1080/07391102.2020.1846624. PubMed DOI PMC
Sukardiman M.E., Fadhil Pratama M.R., Poerwono H., Siswodihardjo S. The Coronavirus disease 2019 main protease inhibitor from (Burm. F) ness. J. Adv. Pharm. Technol. Res. 2020;11:157–162. doi: 10.4103/japtr.JAPTR_84_20. PubMed DOI PMC
Gao F., Liu X., Shen Z., Jia X., He H., Gao J., Wu J., Jiang C., Zhou H., Wang Y. Andrographolide sulfonate attenuates acute lung injury by reducing expression of myeloperoxidase and neutrophil-derived proteases in mice. Front. Physiol. 2018;9:939. doi: 10.3389/fphys.2018.00939. PubMed DOI PMC
Wen L., Xia N., Chen X., Li Y., Hong Y., Liu Y., Wang Z., Liu Y. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur. J. Pharmacol. 2014;740:421–427. doi: 10.1016/j.ejphar.2014.06.053. PubMed DOI
Malik Z., Parveen R., Parveen B., Zahiruddin S., Aasif Khan M., Khan A., Massey S., Ahmad S., Husain S.A. Anticancer potential of andrographolide from andrographis paniculata (Burm.f.) nees and its mechanisms of action. J. Ethnopharmacol. 2021;272:113936. doi: 10.1016/j.jep.2021.113936. PubMed DOI
Geng J., Liu W., Gao J., Jiang C., Fan T., Sun Y., Qin Z.-H., Xu Q., Guo W., Gao J. Andrographolide alleviates parkinsonism in MPTP-PD Mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br. J. Pharmacol. 2019;176:4574–4591. doi: 10.1111/bph.14823. PubMed DOI PMC
Plešingerová H., Janovská P., Mishra A., Smyčková L., Poppová L., Libra A., Plevová K., Ovesná P., Radová L., Doubek M., et al. Expression of COBLL1 encoding novel ROR1 Binding partner is robust predictor of survival in chronic lymphocytic leukemia. Haematologica. 2018;103:313–324. doi: 10.3324/haematol.2017.178699. PubMed DOI PMC
Lai Y.H., Yu S.L., Chen H.Y., Wang C.C., Chen H.W., Chen J.J.W. The HLJ1-Targeting drug screening identified Chinese Herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis. 2013;34:1069–1080. doi: 10.1093/carcin/bgt005. PubMed DOI
Hidalgo M.A., Romero A., Figueroa J., Cortés P., Concha I.I., Hancke J.L., Burgos R.A. Andrographolide interferes with Binding of nuclear factor-kappaB to DNA in HL-60-Derived neutrophilic cells. Br. J. Pharmacol. 2005;144:680–686. doi: 10.1038/sj.bjp.0706105. PubMed DOI PMC
Chen H.W., Lin A.H., Chu H.C., Li C.C., Tsai C.W., Chao C.Y., Wang C.J., Lii C.K., Liu K.L. Inhibition of TNF-α-induced Inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. J. Nat. Prod. 2011;74:2408–2413. doi: 10.1021/np200631v. PubMed DOI
Yen T.L., Chen R.J., Jayakumar T., Lu W.J., Hsieh C.Y., Hsu M.J., Yang C.H., Chang C.C., Lin Y.K., Lin K.H., et al. Andrographolide stimulates p38 Mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in Primary cerebral endothelial cells for definite protection against ischemic stroke in rats. Transl. Res. 2016;170:57–72. doi: 10.1016/j.trsl.2015.12.002. PubMed DOI
Iruretagoyena M.I., Tobar J.A., González P.A., Sepúlveda S.E., Figueroa C.A., Burgos R.A., Hancke J.L., Kalergis A.M. Andrographolide interferes with T Cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J. Pharmacol. Exp. Ther. 2005;312:366–372. doi: 10.1124/jpet.104.072512. PubMed DOI
Zhang C., Gui L., Xu Y., Wu T., Liu D. Preventive Effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by Inducing immune tolerance. Int. Immunopharmacol. 2013;16:451–456. doi: 10.1016/j.intimp.2013.05.002. PubMed DOI
Su H., Mo J., Ni J., Ke H., Bao T., Xie J., Xu Y., Xie L., Chen W. Andrographolide Exerts antihyperglycemic effect through Strengthening intestinal barrier function and increasing microbial composition of Akkermansia Muciniphila. Oxid. Med. Cell. Longev. 2020;2020:6538930. doi: 10.1155/2020/6538930. PubMed DOI PMC
Gherardelli C., Cisternas P., Gutiérrez J., Martinez M., Inestrosa N.C. Andrographolide Restores glucose uptake in rat hippocampal neurons. J. Neurochem. 2021;157:1222–1233. doi: 10.1111/jnc.15229. PubMed DOI
Anantharaman S., Rego R., Muthakka M., Anties T., Krishna H. Andrographis paniculata-mediated synthesis of silver nanoparticles: Antimicrobial properties and computational studies. SN Appl. Sci. 2020;2:1618. doi: 10.1007/s42452-020-03394-7. DOI
Roy P., Das S., Auddy R.G., Saha A., Mukherjee A. Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm. Res. 2013;30:1252–1262. doi: 10.1007/s11095-012-0964-5. PubMed DOI
Roy P., Das S., Mondal A., Chatterji U., Mukherjee A. Nanoparticle engineering enhances anticancer efficacy of andrographolide in MCF-7 Cells and mice bearing EAC. Curr. Pharm. Biotechnol. 2012;13:2669–2681. doi: 10.2174/138920112804724855. PubMed DOI
Sanati P., Chua L.S., Nasiri R., Hashemi S.-S. Nanoencapsulation of Andrographolide rich extract for the inhibition of cervical and neuroblastoma cancer cells. J. Biomed. Nanotechnol. 2020;16:1370–1380. doi: 10.1166/jbn.2020.2973. PubMed DOI
Li H., Qu X., Qian W., Song Y., Wang C., Liu W. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Dis. 2020;00:1–8. doi: 10.1111/odi.13751. PubMed DOI
Ahiwale R.J., Chellampillai B., Pawar A.P. Investigation of 1,2-Dimyristoyl-Sn-Glycero-3-Phosphoglycerol-Sodium (DMPG-Na) Lipid with various metal cations in nanocochleate preformulation: Application for Andrographolide oral delivery in cancer therapy. AAPS Pharm. Sci. Tech. 2020;21:279. doi: 10.1208/s12249-020-01801-1. PubMed DOI
Guan S.P., Tee W., Ng D.S.W., Chan T.K., Peh H.Y., Ho W.E., Cheng C., Mak J.C., Wong W.S.F. Andrographolide protects against cigarette smoke-induced Oxidative lung injury via augmentation of Nrf2 activity. Br. J. Pharmacol. 2013;168:1707–1718. doi: 10.1111/bph.12054. PubMed DOI PMC
Chakraborty S., Ehsan I., Mukherjee B., Mondal L., Roy S., Saha K.D., Paul B., Debnath M.C., Bera T. Therapeutic potential of Andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine. 2019;20:102006. doi: 10.1016/j.nano.2019.04.009. PubMed DOI
Chen P., Zeng Z., Du H. Establishment and Validation of a drug-target microarray for SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020;530:4–9. doi: 10.1016/j.bbrc.2020.05.217. PubMed DOI PMC
Sa-ngiamsuntorn K., Suksatu A., Pewkliang Y., Thongsri P., Kanjanasirirat P., Manopwisedjaroen S., Charoensutthivarakul S., Wongtrakoongate P., Pitiporn S., Khemawoot P., et al. Anti-SARS-CoV-2 Activity of andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod. 2021;84:1261–1270. doi: 10.1021/acs.jnatprod.0c01324. PubMed DOI
Rehan M., Ahmed F., Howladar S.M., Refai M.Y., Baeissa H.M., Zughaibi T.A., Kedwa K.M., Jamal M.S. A Computational Approach identified andrographolide as a potential drug for suppressing COVID-19-Induced cytokine storm. Front. Immunol. 2021;12:648250. doi: 10.3389/fimmu.2021.648250. PubMed DOI PMC
Srivastava N., Garg P., Srivastava P., Seth P.K. A Molecular dynamics simulation study of the ACE2 Receptor with screened Natural inhibitors to identify novel drug candidate against COVID-19. PeerJ. 2021;9:e11171. doi: 10.7717/peerj.11171. PubMed DOI PMC
Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., et al. Association of Cardiac injury with Mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950. PubMed DOI PMC
Junior A.G., Tolouei S.E.L., Dos Reis Lívero F.A., Gasparotto F., Boeing T., de Souza P. Natural Agents modulating ACE-2: A Review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des. 2021;27:1588–1596. doi: 10.2174/1381612827666210114150607. PubMed DOI
Alazmi M., Motwalli O. Molecular Basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through Docking, characterization, and molecular dynamics for natural drug candidates. J. Mol. Model. 2020;26:338. doi: 10.1007/s00894-020-04599-8. PubMed DOI PMC
Rajagopal K., Varakumar P., Baliwada A., Byran G. Activity of Phytochemical constituents of curcuma longa (turmeric) and andrographis paniculata against Coronavirus (COVID-19): An in silico approach. Futur. J. Pharm. Sci. 2020;6:104. doi: 10.1186/s43094-020-00126-x. PubMed DOI PMC
Li X., Yu J., Zhang Z., Ren J., Peluffo A.E., Zhang W., Zhao Y., Wu J., Yan K., Cohen D., et al. Network bioinformatics Analysis provides insight into drug repurposing for COVID-19. Med. Drug Discov. 2021;10:100090. doi: 10.1016/j.medidd.2021.100090. PubMed DOI PMC
Zhang X.Y., Lv L., Zhou Y.L., Xie L.D., Xu Q., Zou X.F., Ding Y., Tian J., Fan J.L., Fan H.W., et al. Efficacy and safety of xiyanping injection in the treatment of COVID-19: A Multicenter, prospective, open-label and randomized controlled trial. Phytother. Res. 2021;35:4401–4410. doi: 10.1002/ptr.7141. PubMed DOI PMC
Jiang M., Sheng F., Zhang Z., Ma X., Gao T., Fu C., Li P. Andrographis paniculata (Burm.f.) Nees and its major constituent Andrographolide as potential antiviral agents. J. Ethnopharmacol. 2021;272:113954. doi: 10.1016/j.jep.2021.113954. PubMed DOI
Zhang H., Li S., Si Y., Xu H. Andrographolide and Its derivatives: Current Achievements and future perspectives. Eur. J. Med. Chem. 2021;224:113710. doi: 10.1016/j.ejmech.2021.113710. PubMed DOI
Murugan N.A., Pandian C.J., Jeyakanthan J. Computational Investigation on phytochemicals to evaluate their potency against SARS-CoV-2 in Comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn. 2021;39:4415–4426. doi: 10.1080/07391102.2020.1777901. PubMed DOI PMC
Ekalaksananan T., Sookmai W., Fangkham S., Pientong C., Aromdee C., Seubsasana S., Kongyingyoes B. Activity of andrographolide and its derivatives on HPV16 pseudovirus infection and viral Oncogene expression in cervical carcinoma cells. Nutr. Cancer. 2015;67:687–696. doi: 10.1080/01635581.2015.1019630. PubMed DOI
Khanal P., Dey Y.N., Patil R., Chikhale R., Wanjari M.M., Gurav S.S., Patil B.M., Srivastava B., Gaidhani S.N. Combination of System biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Adv. 2021;11:5065–5079. doi: 10.1039/D0RA10529E. PubMed DOI PMC
Aromdee C. Modifications of Andrographolide to increase some biological activities: A patent review (2006–2011) Expert Opin. Ther. Pat. 2012;22:169–180. doi: 10.1517/13543776.2012.661718. PubMed DOI
Chao W.W., Lin B.-F. Isolation and identification of bioactive compounds in andrographis paniculata (Chuanxinlian) Chin. Med. 2010;5:1–17. doi: 10.1186/1749-8546-5-17. PubMed DOI PMC
Aromdee C., Suebsasana S., Ekalaksananan T., Pientong C., Thongchai S. Stage of Action of naturally occurring andrographolides and Their semisynthetic analogues against herpes simplex virus type 1 in vitro. Planta Med. 2011;77:915–921. doi: 10.1055/s-0030-1250659. PubMed DOI
Tang C., Liu Y., Wang B., Gu G., Yang L., Zheng Y., Qian H., Huang W. Synthesis and Biological evaluation of andrographolide Derivatives as potent anti-HIV agents. Arch. Pharm. 2012;345:647–656. doi: 10.1002/ardp.201200008. PubMed DOI
Uttekar M.M., Das T., Pawar R.S., Bhandari B., Menon V., Nutan, Gupta S.K., Bhat S.V. Anti-HIV Activity of semisynthetic Derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem. 2012;56:368–374. doi: 10.1016/j.ejmech.2012.07.030. PubMed DOI
Li F., Lee E.M., Sun X., Wang D., Tang H., Zhou G.-C. Design, Synthesis and discovery of andrographolide derivatives against zika virus infection. Eur. J. Med. Chem. 2020;187:111925. doi: 10.1016/j.ejmech.2019.111925. PubMed DOI PMC
Priengprom T., Ekalaksananan T., Kongyingyoes B., Suebsasana S., Aromdee C., Pientong C. Synergistic effects of acyclovir and 3,19-Isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement. Altern. Med. 2015;15:56. doi: 10.1186/s12906-015-0591-x. PubMed DOI PMC
Yuan L., Zhang C., Sun H., Liu Q., Huang J., Sheng L., Lin B., Wang J., Chen L. The Semi-synthesis of novel andrographolide analogues and Anti-Influenza Virus activity evaluation of their derivatives. Bioorg. Med. Chem. Lett. 2016;26:769–773. doi: 10.1016/j.bmcl.2015.12.100. PubMed DOI
Wang D., Guo H., Chang J., Wang D., Liu B., Gao P., Wei W. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front. Microbiol. 2018;9:2407. doi: 10.3389/fmicb.2018.02407. PubMed DOI PMC
Cai W., Wen H., Zhou Q., Wu L., Chen Y., Zhou H., Jin M. 14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Res. 2020;181:104885. doi: 10.1016/j.antiviral.2020.104885. PubMed DOI
Patil R., Jain V. Andrographolide: A review of analytical methods. J. Chromatogr. Sci. 2021;59:191–203. doi: 10.1093/chromsci/bmaa091. PubMed DOI
Pancham Y., Patil N., Girish B., Mannur V. Development and validation of analytical method for determination of andrographolide in Bulk powder. Int. J. Pharm. Res. Health Sci. 2019;7:2899–2903. doi: 10.21276/ijprhs.2019.01.08. DOI
Pundarikakshudu K., Shah K., Trivedi P., Shivprakash K. Spectrophotometric determination of andrographolides in Andrographis Paniculata nees and its formulation. Indian J. Pharm. Sci. 2007;69:457. doi: 10.4103/0250-474X.34564. DOI
Indrati O., Martien R., Rohman A., Nugroho A.K. Employment of ATR-FTIR and HPLC-UV method for detection and quantification of andrographolide. Int. J. Appl. Pharm. 2018;10:135. doi: 10.22159/ijap.2018v10i6.28691. DOI
Shivali G., Praful L., Vijay G. A Validated Fourier transform infrared spectroscopy method for quantification of total lactones in inula racemosa and andrographis paniculata. Phytochem. Anal. 2012;23:171–176. doi: 10.1002/pca.1339. PubMed DOI
Jiang Z., Hao Z., Wu Q., Li Y., Liu H., Yan L. A novel flow-injection chemiluminescence method for determination of andrographolide in andrographis tablets. Drug Test. Anal. 2013;5:340–345. doi: 10.1002/dta.1346. PubMed DOI
Zhao Q., Ding J., Jin H., Ding L., Ren N. A Green method using a micellar system for determination of andrographolide and dehydroandrographolide in human plasma. J. Chromatogr. Sci. 2013;51:341–348. doi: 10.1093/chromsci/bms146. PubMed DOI
Stanković D.M., Samphao A., Kuzmanović D., Kalcher K. Novel electroanalyical method for the determination of andrographolide from andrographis paniculata extract and urine samples. Microchem. J. 2015;122:16–19. doi: 10.1016/j.microc.2015.04.005. DOI
Yanfang Z., Xingping L., Zongde Z., Liren C., Yongmin L. Simultaneous determination of andrographolide and dehydroandrographolide in andrographis paniculata and Chinese medicinal preparations by microemulsion electrokinetic chromatography. J. Pharm. Biomed. Anal. 2006;40:157–161. doi: 10.1016/j.jpba.2005.04.003. PubMed DOI
Zhao J., Yang G., Liu H., Wang D., Song X., Chen Y. Determination of andrographolide, deoxyandrographolide and neoandrographolide in the Chinese herb andrographis paniculata by micellar electrokinetic capillary chromatography. Phytochem. Anal. 2002;13:222–227. doi: 10.1002/pca.644. PubMed DOI
Qizhen D., Jerz G., Winterhalter P. Separation of andrographolide and neoandrographolide from the leaves of andrographis Paniculata using high-speed counter-current chromatography. J. Chromatogr. A. 2003;984:147–151. PubMed
Jain P.K., Ravichandran V., Jain P.K., Agrawal R.K. High-performance thin layer chromatography method for estimation of andrographolide in herbal extract and polyherbal formulations. J. Saudi Chem. Soc. 2010;14:383–389. doi: 10.1016/j.jscs.2010.03.001. DOI
Chavan A.K., Nirmal S.A., Pattan S.R. Development and validation of HPTLC method to detect curcumin and gallic acid in polyherbal microencapsulated formulation. J. Liq. Chromatogr. Relat. Technol. 2015;38:1213–1217. doi: 10.1080/10826076.2015.1032416. DOI
Phattanawasin P., Burana-Osot J., Sotanaphun U., Kumsum A. Stability-indicating TLC—image analysis method for determination of andrographolide in bulk drug and andrographis paniculata formulations. Acta Chromatogr. 2016;28:525–540. doi: 10.1556/1326.2016.28.4.12. DOI
Syukri Y., Afetma D.W., Sirin M., Fajri R., Ningrum A.D.K., Setiawan S.D., Wibowo A. Validation of a simple HPLC-UV method for the quantification of andrographolide in self-nano emulsifying drug delivery system (Snedds) for dissolution study. Int. J. Drug Deliv. Technol. 2017;7:239–243.
Bhope S.G., Kuber V.V., Nagore D.H., Gaikwad P.S., Patil M.J. Development and validation of RP-HPLC method for simultaneous analysis of andrographolide, phyllanthin, and hypophyllanthin from herbal hepatoprotective formulation. Acta Chromatogr. 2013;25:159–169. doi: 10.1556/AChrom.25.2013.1.10. DOI
Kotagiri R., Kanaaujia A., Singh P., Thakur D. Validated RP-HPLC method for the quantification of andrographolide in toxiroak premix, a polyherbal mycotoxin inhibitor. Int. J. Pharm. Sci. Res. 2013;4:2623–2628.
Suo X.B., Zhang H., Wang Y.Q. HPLC Determination of Andrographolide in Rat Whole Blood: Study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed. Chromatogr. 2007;21:730–734. doi: 10.1002/bmc.812. PubMed DOI
Levita J., Juwita T., Ramadhani S., Saptarini N., Mutakin M. Chromatogram profiles of andrographolide in A23187-induced New Zealand rabbit’s urine and faeces. J. App. Pharm. Sci. 2017;7:156–159. doi: 10.7324/JAPS.2017.70121. DOI
Chandra P., Kannujia R., Pandey R., Shukla S., Bahadur L., Pal M., Kumar B. Rapid quantitative analysis of multi-components in andrographis paniculata using UPLC-QqQLIT-MS/MS: Application to soil sodicity and organic farming. Ind. Crops Prod. 2016;83:423–430. doi: 10.1016/j.indcrop.2015.12.091. DOI
Bera R., Ahmed S.K.M., Sarkar L., Sen T., Karmakar S. Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method. Pharm. Biol. 2014;52:321–329. doi: 10.3109/13880209.2013.836544. PubMed DOI
Pholphana N., Panomvana D., Rangkadilok N., Suriyo T., Ungtrakul T., Pongpun W., Thaeopattha S., Satayavivad J. A simple and sensitive LC-MS/MS method for determination of four major active diterpenoids from andrographis paniculata in human plasma and its application to a pilot study. Planta Med. 2016;82:113–120. doi: 10.1055/s-0035-1558115. PubMed DOI
Nugraha R.V., Ridwansyah H., Ghozali M., Khairani A.F., Atik N. Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons. Evid. Based Complementary Altern. Med. 2020;2020:1–12. doi: 10.1155/2020/2560645. PubMed DOI PMC
Lim X.Y., Chan J.S.W., Tan T.Y.C., Teh B.P., Razak M.R.M., Mohamad S., Mohamed A.F.S. Andrographis paniculata (Burm. F.) wall. ex nees, andrographolide, and andrographolide analogues as SARS-CoV-2 antivirals? A rapid review. Nat. Prod. Commum. 2021;16 doi: 10.1177/1934578X211016610. DOI
Çubuk H., Özbİl M. Comparison of clinically approved molecules on SARS-CoV-2 drug target proteins: A molecular docking study. Turk. J. Chem. 2021;45:35–41. doi: 10.3906/kim-2008-35. PubMed DOI PMC
Uzunova K., Filipova E., Pavlova V., Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 2020;131:110668. doi: 10.1016/j.biopha.2020.110668. PubMed DOI PMC
Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 2020;10:766–788. doi: 10.1016/j.apsb.2020.02.008. PubMed DOI PMC
Basak A., Li S., Banik U.K. A new combination drugs using andrographolide derived natural prod-559 uct restomune for management of HIV. Case Rep. Clin. Pract. Rev. 2003;4:223–233.