Systematic Study of the Effects of High Shear Granulation Parameters on Process Yield, Granule Size, and Shape by Dynamic Image Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 547
Charles University
313021X329
European Regional Development Fund
313011V334
European Regional Development Fund
APVV-18-0348
Slovak Research and Development Agency
APVV-18-0282
Slovak Research and Development Agency
APVV-20-0317
Slovak Research and Development Agency
KEGA 016STU-4/2019
Slovak Research and Development Agency
KEGA 036STU-4/2020
Slovak Research and Development Agency
PubMed
34834308
PubMed Central
PMC8623888
DOI
10.3390/pharmaceutics13111894
PII: pharmaceutics13111894
Knihovny.cz E-zdroje
- Klíčová slova
- dynamic image analysis, granules, high shear granulation, liquid to solid ratio,
- Publikační typ
- časopisecké články MeSH
The aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in the shape factors relied not only on the process parameters, but also on the area equivalent diameter of the individual granules in the batch. A linear relationship was found between the amount of granulation liquid and the compressibility of the granules. Using response surface methodology, models for predicting the size of granules and process yield related to the amount of added liquid and the impeller speed were generated, on the basis of which the size of granules and yield can be determined with great accuracy.
Zobrazit více v PubMed
Rajniak P., Stepanek F., Dhanasekharan K., Fan R., Mancinelli C., Chern R.T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator. Powder Technol. 2009;189:190–210. doi: 10.1016/j.powtec.2008.04.027. DOI
Thapa P., Tripathi J., Jeong S.H. Recent trends and future perspective of pharmaceutical wet granulation for better process understanding and product development. Powder Technol. 2019;344:864–882. doi: 10.1016/j.powtec.2018.12.080. DOI
Iveson S.M., Litster J.D., Hapgood K., Ennis B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001;117:3–39. doi: 10.1016/S0032-5910(01)00313-8. DOI
Liu B., Wang J., Zeng J., Zhao L., Wang Y., Feng Y., Du R. A review of high shear wet granulation for better process understanding, control and product development. Powder Technol. 2021;381:204–223. doi: 10.1016/j.powtec.2020.11.051. DOI
Han J.K., Shin B.S., Choi D.H. Comprehensive study of intermediate and critical quality attributes for process control of high-shear wet granulation using multivariate analysis and the quality by design approach. Pharmaceutics. 2019;11:252. doi: 10.3390/pharmaceutics11060252. PubMed DOI PMC
Oka S., Emady H., Kašpar O., Tokárová V., Muzzio F., Štěpánek F., Ramachandran R. The effects of improper mixing and preferential wetting of active and excipient ingredients on content uniformity in high shear wet granulation. Powder Technol. 2015;278:266–277. doi: 10.1016/j.powtec.2015.03.018. DOI
Suresh P., Sreedhar I., Vaidhiswaran R., Venugopal A. A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem. Eng. J. 2017;328:785–815. doi: 10.1016/j.cej.2017.07.091. DOI
Hapgood K.P., Litster J.D., Smith R. Nucleation regime map for liquid bound granules. AIChE J. 2003;49:350–361. doi: 10.1002/aic.690490207. DOI
Cavinato M., Andreato E., Bresciani M., Pignatone I., Bellazzi G., Franceschinis E., Realdon N., Canu P., Santomaso A.C. Combining formulation and process aspects for optimizing the high-shear wet granulation of common drugs. Int. J. Pharm. 2011;416:229–241. doi: 10.1016/j.ijpharm.2011.06.051. PubMed DOI
Hansuld E.M., Briens L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharm. 2014;472:192–201. doi: 10.1016/j.ijpharm.2014.06.027. PubMed DOI
Lee K.T., Ingram A., Rowson N.A. Comparison of granule properties produced using Twin Screw Extruder and High Shear Mixer: A step towards understanding the mechanism of twin screw wet granulation. Powder Technol. 2013;238:91–98. doi: 10.1016/j.powtec.2012.05.031. DOI
Kyttä K.M., Lakio S., Wikström H., Sulemanji A., Fransson M., Ketolainen J., Tajarobi P. Comparison between twin-screw and high-shear granulation—The effect of filler and active pharmaceutical ingredient on the granule and tablet properties. Powder Technol. 2020;376:178–198. doi: 10.1016/j.powtec.2020.08.030. DOI
Trpělková Ž., Hurychová H., Kuentz M., Vraníková B., Šklubalová Z. Introduction of the energy to break an avalanche as a promising parameter for powder flowability prediction. Powder Technol. 2020;375:33–41. doi: 10.1016/j.powtec.2020.07.095. DOI
Sutton A.T., Kriewall C.S., Leu M.C., Newkirk J.W. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 2017;12:3–29. doi: 10.1080/17452759.2016.1250605. DOI
Roostaei M., Hosseini S.A., Soroush M., Velayati A., Alkouh A., Mahmoudi M., Ghalambor A., Fattahpour V. Comparison of various particle-size distribution-measurement methods. SPE Reserv. Eval. Eng. 2020;23:1159–1179. doi: 10.2118/199335-PA. DOI
Yu W., Muteki K., Zhang L., Kim G. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions. J. Pharm. Sci. 2011;100:284–293. doi: 10.1002/jps.22254. PubMed DOI
Yu W., Hancock B.C. Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. Int. J. Pharm. 2008;361:150–157. doi: 10.1016/j.ijpharm.2008.05.025. PubMed DOI
Lillotte T.D., Bebernik P., Wagner K.G. A novel approach to determine the granule density of milled ribbons using multi-stage air classification combined with dynamic image analysis. Powder Technol. 2021;381:685–697. doi: 10.1016/j.powtec.2020.12.023. DOI
Nalluri V.R., Schirg P., Gao X., Virdis A., Imanidis G., Kuentz M. Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. Int. J. Pharm. 2010;391:107–114. doi: 10.1016/j.ijpharm.2010.02.027. PubMed DOI
Czajkowska M., Sznitowska M., Kleinebudde P. Determination of coating thickness of minitablets and pellets by dynamic image analysis. Int. J. Pharm. 2015;495:347–353. doi: 10.1016/j.ijpharm.2015.08.102. PubMed DOI
Yang Y., Wei Z., Fourie A., Chen Y., Zheng B., Wang W., Zhuang S. Particle shape analysis of tailings using digital image processing. Environ. Sci. Pollut. Res. 2019;26:26397–26403. doi: 10.1007/s11356-019-05974-6. PubMed DOI
Ulusoy U. Dynamic image analysis of differently milled talc particles and comparison by various methods. Part. Sci. Technol. 2018;36:332–339. doi: 10.1080/02726351.2016.1248261. DOI
Cepuritis R., Garboczi E.J., Jacobsen S., Snyder K.A. Comparison of 2-D and 3-D shape analysis of concrete aggregate fines from VSI crushing. Powder Technol. 2017;309:110–125. doi: 10.1016/j.powtec.2016.12.037. DOI
Shang Y., Kaakinen A., Beets C.J., Prins M.A. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits. Sediment. Geol. 2018;375:36–48. doi: 10.1016/j.sedgeo.2017.12.001. DOI
Bandini V., Biondi G., Cascone E., Di Filippo G. Dynamic image analysis of Etna Sand in one-dimensional compression. Meas. J. Int. Meas. Confed. 2017;104:336–346. doi: 10.1016/j.measurement.2016.07.050. DOI
Ulusoy U., Yekeler M. Dynamic image analysis of calcite particles created by different mills. Int. J. Miner. Process. 2014;133:83–90. doi: 10.1016/j.minpro.2014.10.006. DOI
Ulusoy U., Igathinathane C. Dynamic image based shape analysis of hard and lignite coal particles ground by laboratory ball and gyro mills. Fuel Process. Technol. 2014;126:350–358. doi: 10.1016/j.fuproc.2014.05.017. DOI
Ulusoy U., Igathinathane C. Particle size distribution modeling of milled coals by dynamic image analysis and mechanical sieving. Fuel Process. Technol. 2016;143:100–109. doi: 10.1016/j.fuproc.2015.11.007. DOI
Sandler N., Wilson D. Prediction of granule packing and flow behavior based on particle size and shape analysis. J. Pharm. Sci. 2010;99:958–968. doi: 10.1002/jps.21884. PubMed DOI
De Simone V., Caccavo D., Lamberti G., d’Amore M., Barba A.A. Wet-granulation process: Phenomenological analysis and process parameters optimization. Powder Technol. 2018;340:411–419. doi: 10.1016/j.powtec.2018.09.053. DOI
Kumar A., Vercruysse J., Bellandi G., Gernaey K.V., Vervaet C., Remon J.P., De Beer T., Nopens I. Experimental investigation of granule size and shape dynamics in twin-screw granulation. Int. J. Pharm. 2014;475:485–495. doi: 10.1016/j.ijpharm.2014.09.020. PubMed DOI
Madarász L., Nagy Z.K., Hoffer I., Szabó B., Csontos I., Pataki H., Démuth B., Szabó B., Csorba K., Marosi G. Real-time feedback control of twin-screw wet granulation based on image analysis. Int. J. Pharm. 2018;547:360–367. doi: 10.1016/j.ijpharm.2018.06.003. PubMed DOI
Chitu T.M., Oulahna D., Hemati M. Wet granulation in laboratory-scale high shear mixers: Effect of chopper presence, design and impeller speed. Powder Technol. 2011;206:34–43. doi: 10.1016/j.powtec.2010.07.016. DOI
Shi L., Feng Y., Sun C.C. Origin of profound changes in powder properties during wetting and nucleation stages of high-shear wet granulation of microcrystalline cellulose. Powder Technol. 2011;208:663–668. doi: 10.1016/j.powtec.2011.01.006. DOI
Osei-Yeboah F., Zhang M., Feng Y., Sun C.C. A formulation strategy for solving the overgranulation problem in high shear wet granulation. J. Pharm. Sci. 2014;103:2434–2440. doi: 10.1002/jps.24066. PubMed DOI
Morkhade D.M. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation. Powder Technol. 2017;320:114–124. doi: 10.1016/j.powtec.2017.07.038. DOI
Cavinato M., Franceschinis E., Cavallari S., Realdon N., Santomaso A. Relationship between particle shape and some process variables in high shear wet granulation using binders of different viscosity. Chem. Eng. J. 2010;164:292–298. doi: 10.1016/j.cej.2010.08.029. DOI
Veronica N., Goh H.P., Kang C.Y.X., Liew C.V., Heng P.W.S. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes. Int. J. Pharm. 2018;553:474–482. doi: 10.1016/j.ijpharm.2018.10.067. PubMed DOI
Nalesso S., Codemo C., Franceschinis E., Realdon N., Artoni R., Santomaso A.C. Texture analysis as a tool to study the kinetics of wet agglomeration processes. Int. J. Pharm. 2015;485:61–69. doi: 10.1016/j.ijpharm.2015.03.007. PubMed DOI
Shi L., Feng Y., Sun C.C. Initial moisture content in raw material can profoundly influence high shear wet granulation process. Int. J. Pharm. 2011;416:43–48. doi: 10.1016/j.ijpharm.2011.05.080. PubMed DOI
Mangwandi C., Adams M.J., Hounslow M.J., Salman A.D. Effect of impeller speed on mechanical and dissolution properties of high-shear granules. Chem. Eng. J. 2010;164:305–315. doi: 10.1016/j.cej.2010.05.039. DOI
Liu E.J., Cashman K.V., Rust A.C. Optimising shape analysis to quantify volcanic ash morphology. GeoResJ. 2015;8:14–30. doi: 10.1016/j.grj.2015.09.001. DOI
Altuhafi F., O’Sullivan C., Cavarretta I. Analysis of an Image-Based Method to Quantify the Size and Shape of Sand Particles. J. Geotech. Geoenviron. Eng. 2013;139:1290–1307. doi: 10.1061/(ASCE)GT.1943-5606.0000855. DOI
Zhao B., Wang J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 2016;291:262–275. doi: 10.1016/j.powtec.2015.12.029. DOI
Bullard J.W., Garboczi E.J. Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions. Powder Technol. 2013;249:241–252. doi: 10.1016/j.powtec.2013.08.015. DOI
Chen M., Wu S., Xu S., Yu B., Shilbayeh M., Liu Y., Zhu X., Wang J., Gong J. Caking of crystals: Characterization, mechanisms and prevention. Powder Technol. 2018;337:51–67. doi: 10.1016/j.powtec.2017.04.052. DOI
Yang J., Luo X.D. Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids. 2015;84:196–213. doi: 10.1016/j.jmps.2015.08.001. DOI
Xiu H., Ma F., Li J., Zhao X., Liu L., Feng P., Yang X., Zhang X., Kozliak E., Ji Y. Using fractal dimension and shape factors to characterize the microcrystalline cellulose (MCC) particle morphology and powder flowability. Powder Technol. 2020;364:241–250. doi: 10.1016/j.powtec.2020.01.045. DOI
Almeida-Prieto S., Blanco-Méndez J., Otero-Espinar F.J. Image Analysis of the Shape of Granulated Powder Grains. J. Pharm. Sci. 2004;93:621–634. doi: 10.1002/jps.10572. PubMed DOI
Macho O., Kabát J., Gabrišová Ľ., Peciar P., Juriga M., Fekete R., Galbavá P., Blaško J., Peciar M. Dimensionless criteria as a tool for creation of a model for predicting the size of granules in high-shear granulation. Part. Sci. Technol. 2020;38:3. doi: 10.1080/02726351.2018.1548531. DOI
Briens L., Logan R. The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator. AAPS PharmSciTech. 2011;12:1358–1365. doi: 10.1208/s12249-011-9703-1. PubMed DOI PMC
Wei H., Zhao T., Meng Q., Wang X., Zhang B. Quantifying the Morphology of Calcareous Sands by Dynamic Image Analysis. Int. J. Geomech. 2020;20:04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640. DOI
Shi H., Mohanty R., Chakravarty S., Cabiscol R., Morgeneyer M., Zetzener H., Ooi J.Y., Kwade A., Luding S., Magnanimo V. Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 2018;2018:226–250. doi: 10.14356/kona.2018014. DOI
Dudhat S.M., Kettler C.N., Dave R.H. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends. AAPS PharmSciTech. 2017;18:1177–1189. doi: 10.1208/s12249-016-0576-1. PubMed DOI
Tran D.T., Komínová P., Kulaviak L., Zámostný P. Evaluation of multifunctional magnesium aluminosilicate materials as novel family of glidants in solid dosage products. Int. J. Pharm. 2021;592:120054. doi: 10.1016/j.ijpharm.2020.120054. PubMed DOI
Patil S., Pandit A., Godbole A., Dandekar P., Jain R. Chitosan based co-processed excipient for improved tableting. Carbohydr. Polym. Technol. Appl. 2021;2:100071. doi: 10.1016/j.carpta.2021.100071. DOI
Sun C.C. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int. J. Pharm. 2008;346:93–101. doi: 10.1016/j.ijpharm.2007.06.017. PubMed DOI
Shi L., Feng Y., Sun C.C. Roles of granule size in over-granulation during high shear wet granulation. J. Pharm. Sci. 2010;99:3322–3325. doi: 10.1002/jps.22118. PubMed DOI
Chitu T.M., Oulahna D., Hemati M. Rheology, granule growth and granule strength: Application to the wet granulation of lactose-MCC mixtures. Powder Technol. 2011;208:441–453. doi: 10.1016/j.powtec.2010.08.041. DOI
Osei-Yeboah F., Feng Y., Sun C.C. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. J. Pharm. Sci. 2014;103:207–215. doi: 10.1002/jps.23776. PubMed DOI
Rahmanian N., Ghadiri M., Jia X., Stepanek F. Characterisation of granule structure and strength made in a high shear granulator. Powder Technol. 2009;192:184–194. doi: 10.1016/j.powtec.2008.12.016. DOI
Zegzulka J., Gelnar D., Jezerska L., Prokes R., Rozbroj J. Characterization and flowability methods for metal powders. Sci. Rep. 2020;10:21004. doi: 10.1038/s41598-020-77974-3. PubMed DOI PMC
Bouwman A.M., Henstra M.J., Westerman D., Chung J.T., Zhang Z., Ingram A., Seville J.P.K., Frijlink H.W. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation. Int. J. Pharm. 2005;290:129–136. doi: 10.1016/j.ijpharm.2004.11.024. PubMed DOI
Maroof M.A., Mahboubi A., Noorzad A., Safi Y. A new approach to particle shape classification of granular materials. Transp. Geotech. 2020;22:100296. doi: 10.1016/j.trgeo.2019.100296. DOI
Dai B.B., Yang J., Zhou C.Y., Zhang W. International Conference on Discrete Element Methods. Vol. 188. Springer; Singapore: 2017. Effect of particle shape on the formation of sandpile; pp. 767–776. DOI
Fonteyne M., Soares S., Vercruysse J., Peeters E., Burggraeve A., Vervaet C., Remon J.P., Sandler N., De Beer T. Prediction of quality attributes of continuously produced granules using complementary pat tools. Eur. J. Pharm. Biopharm. 2012;82:429–436. doi: 10.1016/j.ejpb.2012.07.017. PubMed DOI
Mahdi F., Hassanpour A., Muller F. An investigation on the evolution of granule formation by in-process sampling of a high shear granulator. Chem. Eng. Res. Des. 2018;129:403–411. doi: 10.1016/j.cherd.2017.10.038. DOI
Shi L., Feng Y., Sun C.C. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: A double-edged sword. Eur. J. Pharm. Sci. 2011;43:50–56. doi: 10.1016/j.ejps.2011.03.009. PubMed DOI
Bacher C., Olsen P.M., Bertelsen P., Sonnergaard J.M. Compressibility and compactibility of granules produced by wet and dry granulation. Int. J. Pharm. 2008;358:69–74. doi: 10.1016/j.ijpharm.2008.02.013. PubMed DOI