Systematic Study of the Effects of High Shear Granulation Parameters on Process Yield, Granule Size, and Shape by Dynamic Image Analysis

. 2021 Nov 08 ; 13 (11) : . [epub] 20211108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834308

Grantová podpora
SVV 260 547 Charles University
313021X329 European Regional Development Fund
313011V334 European Regional Development Fund
APVV-18-0348 Slovak Research and Development Agency
APVV-18-0282 Slovak Research and Development Agency
APVV-20-0317 Slovak Research and Development Agency
KEGA 016STU-4/2019 Slovak Research and Development Agency
KEGA 036STU-4/2020 Slovak Research and Development Agency

Odkazy

PubMed 34834308
PubMed Central PMC8623888
DOI 10.3390/pharmaceutics13111894
PII: pharmaceutics13111894
Knihovny.cz E-zdroje

The aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in the shape factors relied not only on the process parameters, but also on the area equivalent diameter of the individual granules in the batch. A linear relationship was found between the amount of granulation liquid and the compressibility of the granules. Using response surface methodology, models for predicting the size of granules and process yield related to the amount of added liquid and the impeller speed were generated, on the basis of which the size of granules and yield can be determined with great accuracy.

Zobrazit více v PubMed

Rajniak P., Stepanek F., Dhanasekharan K., Fan R., Mancinelli C., Chern R.T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator. Powder Technol. 2009;189:190–210. doi: 10.1016/j.powtec.2008.04.027. DOI

Thapa P., Tripathi J., Jeong S.H. Recent trends and future perspective of pharmaceutical wet granulation for better process understanding and product development. Powder Technol. 2019;344:864–882. doi: 10.1016/j.powtec.2018.12.080. DOI

Iveson S.M., Litster J.D., Hapgood K., Ennis B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001;117:3–39. doi: 10.1016/S0032-5910(01)00313-8. DOI

Liu B., Wang J., Zeng J., Zhao L., Wang Y., Feng Y., Du R. A review of high shear wet granulation for better process understanding, control and product development. Powder Technol. 2021;381:204–223. doi: 10.1016/j.powtec.2020.11.051. DOI

Han J.K., Shin B.S., Choi D.H. Comprehensive study of intermediate and critical quality attributes for process control of high-shear wet granulation using multivariate analysis and the quality by design approach. Pharmaceutics. 2019;11:252. doi: 10.3390/pharmaceutics11060252. PubMed DOI PMC

Oka S., Emady H., Kašpar O., Tokárová V., Muzzio F., Štěpánek F., Ramachandran R. The effects of improper mixing and preferential wetting of active and excipient ingredients on content uniformity in high shear wet granulation. Powder Technol. 2015;278:266–277. doi: 10.1016/j.powtec.2015.03.018. DOI

Suresh P., Sreedhar I., Vaidhiswaran R., Venugopal A. A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem. Eng. J. 2017;328:785–815. doi: 10.1016/j.cej.2017.07.091. DOI

Hapgood K.P., Litster J.D., Smith R. Nucleation regime map for liquid bound granules. AIChE J. 2003;49:350–361. doi: 10.1002/aic.690490207. DOI

Cavinato M., Andreato E., Bresciani M., Pignatone I., Bellazzi G., Franceschinis E., Realdon N., Canu P., Santomaso A.C. Combining formulation and process aspects for optimizing the high-shear wet granulation of common drugs. Int. J. Pharm. 2011;416:229–241. doi: 10.1016/j.ijpharm.2011.06.051. PubMed DOI

Hansuld E.M., Briens L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharm. 2014;472:192–201. doi: 10.1016/j.ijpharm.2014.06.027. PubMed DOI

Lee K.T., Ingram A., Rowson N.A. Comparison of granule properties produced using Twin Screw Extruder and High Shear Mixer: A step towards understanding the mechanism of twin screw wet granulation. Powder Technol. 2013;238:91–98. doi: 10.1016/j.powtec.2012.05.031. DOI

Kyttä K.M., Lakio S., Wikström H., Sulemanji A., Fransson M., Ketolainen J., Tajarobi P. Comparison between twin-screw and high-shear granulation—The effect of filler and active pharmaceutical ingredient on the granule and tablet properties. Powder Technol. 2020;376:178–198. doi: 10.1016/j.powtec.2020.08.030. DOI

Trpělková Ž., Hurychová H., Kuentz M., Vraníková B., Šklubalová Z. Introduction of the energy to break an avalanche as a promising parameter for powder flowability prediction. Powder Technol. 2020;375:33–41. doi: 10.1016/j.powtec.2020.07.095. DOI

Sutton A.T., Kriewall C.S., Leu M.C., Newkirk J.W. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 2017;12:3–29. doi: 10.1080/17452759.2016.1250605. DOI

Roostaei M., Hosseini S.A., Soroush M., Velayati A., Alkouh A., Mahmoudi M., Ghalambor A., Fattahpour V. Comparison of various particle-size distribution-measurement methods. SPE Reserv. Eval. Eng. 2020;23:1159–1179. doi: 10.2118/199335-PA. DOI

Yu W., Muteki K., Zhang L., Kim G. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions. J. Pharm. Sci. 2011;100:284–293. doi: 10.1002/jps.22254. PubMed DOI

Yu W., Hancock B.C. Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. Int. J. Pharm. 2008;361:150–157. doi: 10.1016/j.ijpharm.2008.05.025. PubMed DOI

Lillotte T.D., Bebernik P., Wagner K.G. A novel approach to determine the granule density of milled ribbons using multi-stage air classification combined with dynamic image analysis. Powder Technol. 2021;381:685–697. doi: 10.1016/j.powtec.2020.12.023. DOI

Nalluri V.R., Schirg P., Gao X., Virdis A., Imanidis G., Kuentz M. Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. Int. J. Pharm. 2010;391:107–114. doi: 10.1016/j.ijpharm.2010.02.027. PubMed DOI

Czajkowska M., Sznitowska M., Kleinebudde P. Determination of coating thickness of minitablets and pellets by dynamic image analysis. Int. J. Pharm. 2015;495:347–353. doi: 10.1016/j.ijpharm.2015.08.102. PubMed DOI

Yang Y., Wei Z., Fourie A., Chen Y., Zheng B., Wang W., Zhuang S. Particle shape analysis of tailings using digital image processing. Environ. Sci. Pollut. Res. 2019;26:26397–26403. doi: 10.1007/s11356-019-05974-6. PubMed DOI

Ulusoy U. Dynamic image analysis of differently milled talc particles and comparison by various methods. Part. Sci. Technol. 2018;36:332–339. doi: 10.1080/02726351.2016.1248261. DOI

Cepuritis R., Garboczi E.J., Jacobsen S., Snyder K.A. Comparison of 2-D and 3-D shape analysis of concrete aggregate fines from VSI crushing. Powder Technol. 2017;309:110–125. doi: 10.1016/j.powtec.2016.12.037. DOI

Shang Y., Kaakinen A., Beets C.J., Prins M.A. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits. Sediment. Geol. 2018;375:36–48. doi: 10.1016/j.sedgeo.2017.12.001. DOI

Bandini V., Biondi G., Cascone E., Di Filippo G. Dynamic image analysis of Etna Sand in one-dimensional compression. Meas. J. Int. Meas. Confed. 2017;104:336–346. doi: 10.1016/j.measurement.2016.07.050. DOI

Ulusoy U., Yekeler M. Dynamic image analysis of calcite particles created by different mills. Int. J. Miner. Process. 2014;133:83–90. doi: 10.1016/j.minpro.2014.10.006. DOI

Ulusoy U., Igathinathane C. Dynamic image based shape analysis of hard and lignite coal particles ground by laboratory ball and gyro mills. Fuel Process. Technol. 2014;126:350–358. doi: 10.1016/j.fuproc.2014.05.017. DOI

Ulusoy U., Igathinathane C. Particle size distribution modeling of milled coals by dynamic image analysis and mechanical sieving. Fuel Process. Technol. 2016;143:100–109. doi: 10.1016/j.fuproc.2015.11.007. DOI

Sandler N., Wilson D. Prediction of granule packing and flow behavior based on particle size and shape analysis. J. Pharm. Sci. 2010;99:958–968. doi: 10.1002/jps.21884. PubMed DOI

De Simone V., Caccavo D., Lamberti G., d’Amore M., Barba A.A. Wet-granulation process: Phenomenological analysis and process parameters optimization. Powder Technol. 2018;340:411–419. doi: 10.1016/j.powtec.2018.09.053. DOI

Kumar A., Vercruysse J., Bellandi G., Gernaey K.V., Vervaet C., Remon J.P., De Beer T., Nopens I. Experimental investigation of granule size and shape dynamics in twin-screw granulation. Int. J. Pharm. 2014;475:485–495. doi: 10.1016/j.ijpharm.2014.09.020. PubMed DOI

Madarász L., Nagy Z.K., Hoffer I., Szabó B., Csontos I., Pataki H., Démuth B., Szabó B., Csorba K., Marosi G. Real-time feedback control of twin-screw wet granulation based on image analysis. Int. J. Pharm. 2018;547:360–367. doi: 10.1016/j.ijpharm.2018.06.003. PubMed DOI

Chitu T.M., Oulahna D., Hemati M. Wet granulation in laboratory-scale high shear mixers: Effect of chopper presence, design and impeller speed. Powder Technol. 2011;206:34–43. doi: 10.1016/j.powtec.2010.07.016. DOI

Shi L., Feng Y., Sun C.C. Origin of profound changes in powder properties during wetting and nucleation stages of high-shear wet granulation of microcrystalline cellulose. Powder Technol. 2011;208:663–668. doi: 10.1016/j.powtec.2011.01.006. DOI

Osei-Yeboah F., Zhang M., Feng Y., Sun C.C. A formulation strategy for solving the overgranulation problem in high shear wet granulation. J. Pharm. Sci. 2014;103:2434–2440. doi: 10.1002/jps.24066. PubMed DOI

Morkhade D.M. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation. Powder Technol. 2017;320:114–124. doi: 10.1016/j.powtec.2017.07.038. DOI

Cavinato M., Franceschinis E., Cavallari S., Realdon N., Santomaso A. Relationship between particle shape and some process variables in high shear wet granulation using binders of different viscosity. Chem. Eng. J. 2010;164:292–298. doi: 10.1016/j.cej.2010.08.029. DOI

Veronica N., Goh H.P., Kang C.Y.X., Liew C.V., Heng P.W.S. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes. Int. J. Pharm. 2018;553:474–482. doi: 10.1016/j.ijpharm.2018.10.067. PubMed DOI

Nalesso S., Codemo C., Franceschinis E., Realdon N., Artoni R., Santomaso A.C. Texture analysis as a tool to study the kinetics of wet agglomeration processes. Int. J. Pharm. 2015;485:61–69. doi: 10.1016/j.ijpharm.2015.03.007. PubMed DOI

Shi L., Feng Y., Sun C.C. Initial moisture content in raw material can profoundly influence high shear wet granulation process. Int. J. Pharm. 2011;416:43–48. doi: 10.1016/j.ijpharm.2011.05.080. PubMed DOI

Mangwandi C., Adams M.J., Hounslow M.J., Salman A.D. Effect of impeller speed on mechanical and dissolution properties of high-shear granules. Chem. Eng. J. 2010;164:305–315. doi: 10.1016/j.cej.2010.05.039. DOI

Liu E.J., Cashman K.V., Rust A.C. Optimising shape analysis to quantify volcanic ash morphology. GeoResJ. 2015;8:14–30. doi: 10.1016/j.grj.2015.09.001. DOI

Altuhafi F., O’Sullivan C., Cavarretta I. Analysis of an Image-Based Method to Quantify the Size and Shape of Sand Particles. J. Geotech. Geoenviron. Eng. 2013;139:1290–1307. doi: 10.1061/(ASCE)GT.1943-5606.0000855. DOI

Zhao B., Wang J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 2016;291:262–275. doi: 10.1016/j.powtec.2015.12.029. DOI

Bullard J.W., Garboczi E.J. Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions. Powder Technol. 2013;249:241–252. doi: 10.1016/j.powtec.2013.08.015. DOI

Chen M., Wu S., Xu S., Yu B., Shilbayeh M., Liu Y., Zhu X., Wang J., Gong J. Caking of crystals: Characterization, mechanisms and prevention. Powder Technol. 2018;337:51–67. doi: 10.1016/j.powtec.2017.04.052. DOI

Yang J., Luo X.D. Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids. 2015;84:196–213. doi: 10.1016/j.jmps.2015.08.001. DOI

Xiu H., Ma F., Li J., Zhao X., Liu L., Feng P., Yang X., Zhang X., Kozliak E., Ji Y. Using fractal dimension and shape factors to characterize the microcrystalline cellulose (MCC) particle morphology and powder flowability. Powder Technol. 2020;364:241–250. doi: 10.1016/j.powtec.2020.01.045. DOI

Almeida-Prieto S., Blanco-Méndez J., Otero-Espinar F.J. Image Analysis of the Shape of Granulated Powder Grains. J. Pharm. Sci. 2004;93:621–634. doi: 10.1002/jps.10572. PubMed DOI

Macho O., Kabát J., Gabrišová Ľ., Peciar P., Juriga M., Fekete R., Galbavá P., Blaško J., Peciar M. Dimensionless criteria as a tool for creation of a model for predicting the size of granules in high-shear granulation. Part. Sci. Technol. 2020;38:3. doi: 10.1080/02726351.2018.1548531. DOI

Briens L., Logan R. The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator. AAPS PharmSciTech. 2011;12:1358–1365. doi: 10.1208/s12249-011-9703-1. PubMed DOI PMC

Wei H., Zhao T., Meng Q., Wang X., Zhang B. Quantifying the Morphology of Calcareous Sands by Dynamic Image Analysis. Int. J. Geomech. 2020;20:04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640. DOI

Shi H., Mohanty R., Chakravarty S., Cabiscol R., Morgeneyer M., Zetzener H., Ooi J.Y., Kwade A., Luding S., Magnanimo V. Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 2018;2018:226–250. doi: 10.14356/kona.2018014. DOI

Dudhat S.M., Kettler C.N., Dave R.H. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends. AAPS PharmSciTech. 2017;18:1177–1189. doi: 10.1208/s12249-016-0576-1. PubMed DOI

Tran D.T., Komínová P., Kulaviak L., Zámostný P. Evaluation of multifunctional magnesium aluminosilicate materials as novel family of glidants in solid dosage products. Int. J. Pharm. 2021;592:120054. doi: 10.1016/j.ijpharm.2020.120054. PubMed DOI

Patil S., Pandit A., Godbole A., Dandekar P., Jain R. Chitosan based co-processed excipient for improved tableting. Carbohydr. Polym. Technol. Appl. 2021;2:100071. doi: 10.1016/j.carpta.2021.100071. DOI

Sun C.C. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int. J. Pharm. 2008;346:93–101. doi: 10.1016/j.ijpharm.2007.06.017. PubMed DOI

Shi L., Feng Y., Sun C.C. Roles of granule size in over-granulation during high shear wet granulation. J. Pharm. Sci. 2010;99:3322–3325. doi: 10.1002/jps.22118. PubMed DOI

Chitu T.M., Oulahna D., Hemati M. Rheology, granule growth and granule strength: Application to the wet granulation of lactose-MCC mixtures. Powder Technol. 2011;208:441–453. doi: 10.1016/j.powtec.2010.08.041. DOI

Osei-Yeboah F., Feng Y., Sun C.C. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. J. Pharm. Sci. 2014;103:207–215. doi: 10.1002/jps.23776. PubMed DOI

Rahmanian N., Ghadiri M., Jia X., Stepanek F. Characterisation of granule structure and strength made in a high shear granulator. Powder Technol. 2009;192:184–194. doi: 10.1016/j.powtec.2008.12.016. DOI

Zegzulka J., Gelnar D., Jezerska L., Prokes R., Rozbroj J. Characterization and flowability methods for metal powders. Sci. Rep. 2020;10:21004. doi: 10.1038/s41598-020-77974-3. PubMed DOI PMC

Bouwman A.M., Henstra M.J., Westerman D., Chung J.T., Zhang Z., Ingram A., Seville J.P.K., Frijlink H.W. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation. Int. J. Pharm. 2005;290:129–136. doi: 10.1016/j.ijpharm.2004.11.024. PubMed DOI

Maroof M.A., Mahboubi A., Noorzad A., Safi Y. A new approach to particle shape classification of granular materials. Transp. Geotech. 2020;22:100296. doi: 10.1016/j.trgeo.2019.100296. DOI

Dai B.B., Yang J., Zhou C.Y., Zhang W. International Conference on Discrete Element Methods. Vol. 188. Springer; Singapore: 2017. Effect of particle shape on the formation of sandpile; pp. 767–776. DOI

Fonteyne M., Soares S., Vercruysse J., Peeters E., Burggraeve A., Vervaet C., Remon J.P., Sandler N., De Beer T. Prediction of quality attributes of continuously produced granules using complementary pat tools. Eur. J. Pharm. Biopharm. 2012;82:429–436. doi: 10.1016/j.ejpb.2012.07.017. PubMed DOI

Mahdi F., Hassanpour A., Muller F. An investigation on the evolution of granule formation by in-process sampling of a high shear granulator. Chem. Eng. Res. Des. 2018;129:403–411. doi: 10.1016/j.cherd.2017.10.038. DOI

Shi L., Feng Y., Sun C.C. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: A double-edged sword. Eur. J. Pharm. Sci. 2011;43:50–56. doi: 10.1016/j.ejps.2011.03.009. PubMed DOI

Bacher C., Olsen P.M., Bertelsen P., Sonnergaard J.M. Compressibility and compactibility of granules produced by wet and dry granulation. Int. J. Pharm. 2008;358:69–74. doi: 10.1016/j.ijpharm.2008.02.013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...