Influence of Iron Addition (Alone or with Calcium) to Elements Biofortification and Antioxidants in Pholiota nameko
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
005/RID/2018/19
Ministry of Science and Higher Education
PubMed
34834638
PubMed Central
PMC8623578
DOI
10.3390/plants10112275
PII: plants10112275
Knihovny.cz E-zdroje
- Klíčová slova
- functional food, iron deficiencies, metal interaction, mushroom supplementation,
- Publikační typ
- časopisecké články MeSH
Mushrooms supplementation with iron (Fe) is usually limited, and therefore it would be beneficial to search for other vital elements able to improve the process. The aim of this study was to verify a possible interaction between Fe and calcium (Ca) to estimate the role of the addition of the latter metal to stimulate Fe accumulation in Pholiota nameko. Additionally, an analysis of phenolic compounds and low molecular weight organic acids (LMWOAs) was performed. The increase of Fe concentration in the substrate caused a significantly higher accumulation of this metal in P. nameko. The addition of Ca (5 or 10 mM) stimulated Fe accumulation, just as Fe concentration in the substrate stimulated Ca accumulation, which pointed to a synergism between these metals. The obtained results show that the presence of Fe in the substrate may also promote K, Mg, Mn, Na, P, and S accumulation. In contrast, the addition of Ca stimulates and/or inhibits their content in fruit bodies. The phenolic and organic acids profile was poor. Only gallic, 4-hydroxybenzoic, sinapic and syringic acids (phenolics), as well as citric and succinic acids (LMWOAs), were quantified in some combinations in P. nameko fruiting bodies.
Zobrazit více v PubMed
Nguyen P.H., Scott S., Headey D., Singh N., Tran L.M., Menon P., Ruel M.T. The Double Burden of Malnutrition in India: Trends and Inequalities (2006–2016) PLoS ONE. 2021;16:e0247856. doi: 10.1371/journal.pone.0247856. PubMed DOI PMC
Barzegar F., Kamankesh M., Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. Food Rev. Int. 2021 doi: 10.1080/87559129.2021.1929303. DOI
Sellamuthu K.M., Malathi P. Biofortification of Crops to Overcome Malnutrition in India. Biot. Res. Today. 2021;3:402–405.
Poniedziałek B., Perkowska K., Rzymski P. Vitamins and Minerals Biofortification of Edible Plants. Wiley-Blackwell; Hoboken, NJ, USA: 2020. Food Fortification; pp. 27–44. DOI
Olson R., Gavin-Smith B., Ferraboschi C., Kraemer K., Davaasambuu G. Food Fortification: The Advantages, Disadvantages and Lessons from Sight and Life Programs. Nutrients. 2021;13:1118. doi: 10.3390/nu13041118. PubMed DOI PMC
Wakeel A., Farooq M., Bashir K., Ozturk L. Plant Macronutrient Use Efficiency Molecular and Genomic Perspectives in Crop Plants. Elsevier; Amsterdam, The Netherlands: 2018. Micronutrient Malnutrition and Biofortification: Recent Advances and Future Perspectives; pp. 225–243. DOI
Buturi C.V., Mauro R.P., Fogliano V., Leonardi C., Giuffrida F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods. 2021;10:223. doi: 10.3390/foods10020223. PubMed DOI PMC
Riaz N., Guerinot M.L. All Together Now: Regulation of the Iron Deficiency Response. J. Exp. Bot. 2021;72:2045–2055. doi: 10.1093/jxb/erab003. PubMed DOI PMC
Henjum S., Groufh-Jacobsen S., Stea T.H., Tonheim L.E., Almendingen K. Iron Status of Vegans, Vegetarians and Pescatarians in Norway. Biomolecules. 2021;11:454. doi: 10.3390/biom11030454. PubMed DOI PMC
Venkataramani V. Iron Homeostasis and Metabolism: Two Sides of a Coin. Adv. Exp. Med. Biol. 2021;1301:25–40. doi: 10.1007/978-3-030-62026-4_3. PubMed DOI
Pasricha S.-R., Tye-Din J., Muckenthaler M.U., Swinkels D.W. Iron Deficiency. Lancet. 2021;397:233–248. doi: 10.1016/S0140-6736(20)32594-0. PubMed DOI
Man Y., Xu T., Adhikari B., Zhou C., Wang Y., Wang B. Iron Supplementation and Iron-Fortified Foods: A Review. Crit. Rev. Food Sci. Nutr. 2021:1–22. doi: 10.1080/10408398.2021.1876623. PubMed DOI
Quintaes K.D., Barberá R., Cilla A. Iron Bioavailability in Iron-Fortified Cereal Foods: The Contribution of in Vitro Studies. Crit. Rev. Food Sci. Nutr. 2017;57:2028–2041. doi: 10.1080/10408398.2013.866543. PubMed DOI
Beinner M.A., Lamounier J.A., Tomaz C. Effect of Iron-Fortified Drinking Water of Daycare Facilities on the Hemoglobin Status of Young Children. J. Am. Coll. Nutr. 2013;24:107–114. doi: 10.1080/07315724.2005.10719451. PubMed DOI
Hekmat S., Mcmahon D.J. Manufacture and Quality of Iron-Fortified Yogurt. J. Dairy Sci. 1997;80:3114–3122. doi: 10.3168/jds.S0022-0302(97)76282-9. PubMed DOI
Larson L.M., Cyriac S., Djimeu E.W., Mbuya M.N.N., Neufeld L.M. Can Double Fortification of Salt with Iron and Iodine Reduce Anemia, Iron Deficiency Anemia, Iron Deficiency, Iodine Deficiency, and Functional Outcomes? Evidence of Efficacy, Effectiveness, and Safety. J. Nutr. 2021;151:15S–28S. doi: 10.1093/jn/nxaa192. PubMed DOI PMC
Hurrell R.F. Food Fortification in a Globalized World. Academic Press; London, UK: 2018. Efficacy and safety of iron fortification; pp. 196–212. DOI
Chopra H., Mishra A.K., Baig A.A., Mohanta T.K., Mohanta Y.K., Baek K.-H. Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J. Fungi. 2021;7:728. doi: 10.3390/jof7090728. PubMed DOI PMC
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 2016;5:80. doi: 10.3390/foods5040080. PubMed DOI PMC
Yue G.G.-L., Lau C.B.-S., Leung P.-C. Medicinal Plants and Mushrooms with Immunomodulatory and Anticancer Properties—A Review on Hong Kong’s Experience. Molecules. 2021;26:2173. doi: 10.3390/molecules26082173. PubMed DOI PMC
Oyetayo V.O., Ogidi C.O., Bayode S.O., Enikanselu F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021:1–10. doi: 10.1007/S42360-021-00410-7. DOI
Windisch W. Interaction of Chemical Species with Biological Regulation of the Metabolism of Essential Trace Elements. Anal. Bioanal. Chem. 2001;372:421–425. doi: 10.1007/s00216-001-1117-6. PubMed DOI
Stamets P. Growing Gourmet and Medicinal Mushrooms Paul Stamets. Ten Speed Press; Berkeley, CA, USA: 2000.
Gąsecka M., Magdziak Z., Siwulski M., Jasińska A., Budzyńska S., Rzymski P., Kalač P., Niedzielski P., Pankiewicz J., Mleczek M. Effect of Thymus Vulgaris Post-Extraction Waste and Spent Coffee Grounds on the Quality of Cultivated Pleurotus Eryngii. J. Food Process. Preserv. 2020;44:e14648. doi: 10.1111/jfpp.14648. DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI
Falniowski A. The Numerical Methods in Taxonomy. 1st ed. Wydawnictwo Uniwersytetu Jagiellońskiego; Kraków, Poland: 2003. Metody Numeryczne w Taksonomii.
Galili T. Dendextend: An R Package for Visualizing, Adjusting and Comparing Trees of Hierarchical Clustering. Bioinformatics. 2015;31:3718–3720. doi: 10.1093/bioinformatics/btv428. PubMed DOI PMC
World Health Organization . The Global Prevalence of Anaemia in 2011. World Health Organization; Geneva, Switzerland: 2015.
Benson C.S., Shah A., Stanworth S.J., Frise C.J., Spiby H., Lax S.J., Murray J., Klein A.A. The Effect of Iron Deficiency and Anaemia on Women’s Health. Anaesthesia. 2021;76:84–95. doi: 10.1111/anae.15405. PubMed DOI
Lynch S.R. Why Nutritional Iron Deficiency Persists as a Worldwide Problem. J. Nutr. 2011;141:763S–768S. doi: 10.3945/jn.110.130609. PubMed DOI
Hurrell R.F. Iron Fortification Practices and Implications for Iron Addition to Salt. J. Nutr. 2021;151:3S–14S. doi: 10.1093/jn/nxaa175. PubMed DOI PMC
Zięba P., Kała K., Włodarczyk A., Szewczyk A., Kunicki E., Sękara A., Muszyńska B. Selenium and Zinc Biofortification of Pleurotus Eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity. Molecules. 2020;25:889. doi: 10.3390/molecules25040889. PubMed DOI PMC
Rzymski P., Niedzielski P., Siwulski M., Mleczek M., Budzyńska S., Gąsecka M., Poniedziałek B. Lithium Biofortification of Medicinal Mushrooms Agrocybe Cylindracea and Hericium Erinaceus. J. Food Sci. Technol. 2017;54:2387–2393. doi: 10.1007/s13197-017-2679-4. PubMed DOI PMC
Gąsecka M., Mleczek M., Siwulski M., Niedzielski P. Phenolic Composition and Antioxidant Properties of Pleurotus Ostreatus and Pleurotus Eryngii Enriched with Selenium and Zinc. Eur. Food Res. Technol. 2015;242:723–732. doi: 10.1007/s00217-015-2580-1. DOI
Almeida S.M., Umeo S.H., Marcante R.C., Yokota M.E., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Mycelium of Pleurotus Ostreatus. Braz. J. Microbiol. 2015;46:195–200. doi: 10.1590/S1517-838246120130695. PubMed DOI PMC
Yokota M.E., Frison P.S., Marcante R.C., Jorge L.F., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A. Iron Translocation in Pleurotus Ostreatus Basidiocarps: Production, Bioavailability, and Antioxidant Activity. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr.15017888. PubMed DOI
Umeo S.H., Faria M.G.I., Vilande S.S.S., Dragunski D.C., do Valle J.S., Colauto N.B., Linde G.A. Iron and Zinc Mycelial Bioaccumulation in Agaricus Subrufescens Strains. Semina: Ciências Agrárias. 2019;40:2513–2522. doi: 10.5433/1679-0359.2019v40n6p2513. DOI
Meniqueti A.B., Ruiz S.P., Faria M.G.I., Valle J.S., Gonçalves A.C., Jr., Dragunski D.C., Colauto N.B., Linde G.A. Iron-Enriched Mycelia of Edible and Medicinal Basidiomycetes. Environ. Technol. 2020 doi: 10.1080/09593330.2020.1824023. PubMed DOI
Verna G., Sila A., Liso M., Mastronardi M., Chieppa M., Cena H., Campiglia P. Iron-Enriched Nutritional Supplements for the 2030 Pharmacy Shelves. Nutrients. 2021;13:378. doi: 10.3390/nu13020378. PubMed DOI PMC
Scheid S.S., Faria M.G.I., Velasquez L.G., do Valle J.S., Gonçalves A.C., Dragunski D.C., Colauto N.B., Linde G.A. Iron Biofortification and Availability in the Mycelial Biomass of Edible and Medicinal Basidiomycetes Cultivated in Sugarcane Molasses. Sci. Rep. 2020;10:12875. doi: 10.1038/s41598-020-69699-0. PubMed DOI PMC
Meniqueti A.B., Ruiz S.P., Faria M.G.I., do Valle J.S., Gonçalves A.C., Jr., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Lentinus Crinitus Mycelia Cultivated in Agroindustrial Byproducts. Waste Biomass Valorization. 2021;12:4965–4974. doi: 10.1007/s12649-021-01353-w. DOI
Gasecka M., Mleczek M., Siwulski M., Niedzielski P., Kozak L. The Effect of Selenium on Phenolics and Flavonoids in Selected Edible White Rot Fungi. LWT Food Sci. Technol. 2015;63:726–731. doi: 10.1016/j.lwt.2015.03.046. DOI
Lin S., Ching L.T., Ke X., Cheung P.C.K. Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms. Int. J. Med. Mushrooms. 2016;18:871–881. doi: 10.1615/IntJMedMushrooms.v18.i10.30. PubMed DOI
Wang B., Zhao N., Li J., Xu R., Wang T., Guo L., Ma M., Fan M., Wei X. Selenium-Enriched Lactobacillus Plantarum Improves the Antioxidant Activity and Flavor Properties of Fermented Pleurotus Eryngii. Food Chem. 2021;345 doi: 10.1016/j.foodchem.2020.128770. PubMed DOI
Vieira P.A.F., Gontijo D.C., Vieira B.C., Fontes E.A., de Assunção L.S., Leite J., Oliveira M.G.D.A., Kasuya M.C.M. Antioxidant Activities, Total Phenolics and Metal Contents in Pleurotus Ostreatus Mushrooms Enriched with Iron, Zinc or Lithium. LWT Food Sci. Technol. 2013;54:421–425. doi: 10.1016/j.lwt.2013.06.016. DOI
Li W., Chen W., Yang Y., Zhang J., Feng J., Yu H., Zhou S., Li X., Liu Y. Effects of Culture Substrates on Taste Component Content and Taste Quality of Lentinula Edodes. Int. J. Food Sci. Technol. 2017;52:981–991. doi: 10.1111/ijfs.13362. DOI
Yang Y., Gu Z., Liu Y.F., Zhou S., Zhang J.S. Determination of Seven Organic Acids in Edible Fungi by Reversed-Phase High Performance Liquid Chromatography. Mycosystema. 2013;32:1064–1070.
Ferreira I., Barros L., Abreu R. Antioxidants in Wild Mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI
Ribeiro B., Valentão P., Baptista P., Seabra R.M., Andrade P.B. Phenolic Compounds, Organic Acids Profiles and Antioxidative Properties of Beefsteak Fungus (Fistulina Hepatica) Food Chem. Toxicol. 2007;45:1805–1813. doi: 10.1016/j.fct.2007.03.015. PubMed DOI
Magdziak Z., Siwulski M., Mleczek M. Characteristics of Organic Acid Profiles in 16 Species of Wild Growing Edible Mushrooms. J. Environ. Sci. Health Part B. 2017;52:784–789. doi: 10.1080/03601234.2017.1356676. PubMed DOI
Karaman M., Stahl M., Vulić J., Vesić M., Čanadanović-Brunet J. Wild-Growing Lignicolous Mushroom Species as Sources of Novel Agents with Antioxidative and Antibacterial Potentials. Int. J. Food Sci. Nutr. 2014;65:311–319. doi: 10.3109/09637486.2013.860584. PubMed DOI
Cardoso R.V.C., Carocho M., Fernandes Â., Pinela J., Stojković D., Soković M., Zied D.C., Cobos J.D.V., González-Paramás A.M., Ferreira I.C.F.R., et al. Antioxidant and Antimicrobial Influence on Oyster Mushrooms (Pleurotus Ostreatus) from Substrate Supplementation of Calcium Silicate. Sustainability. 2021;13:5019. doi: 10.3390/su13095019. DOI
Stojković D.S., Kovačević-Grujičić N., Reis F.S., Davidović S., Barros L., Popović J., Petrović I., Pavić A., Glamočlija J., Ćirić A., et al. Chemical Composition of the Mushroom Meripilus Giganteus Karst. and Bioactive Properties of Its Methanolic Extract. LWT Food Sci. Technol. 2017;79:454–462. doi: 10.1016/j.lwt.2017.01.045. DOI
National Health Service Vitamins and Minerals—NHS. [(accessed on 2 October 2021)]. Available online: https://www.nhs.uk/conditions/vitamins-and-minerals/
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015;13:115. doi: 10.2903/j.efsa.2015.4254. DOI