Influence of Iron Addition (Alone or with Calcium) to Elements Biofortification and Antioxidants in Pholiota nameko

. 2021 Oct 24 ; 10 (11) : . [epub] 20211024

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834638

Grantová podpora
005/RID/2018/19 Ministry of Science and Higher Education

Mushrooms supplementation with iron (Fe) is usually limited, and therefore it would be beneficial to search for other vital elements able to improve the process. The aim of this study was to verify a possible interaction between Fe and calcium (Ca) to estimate the role of the addition of the latter metal to stimulate Fe accumulation in Pholiota nameko. Additionally, an analysis of phenolic compounds and low molecular weight organic acids (LMWOAs) was performed. The increase of Fe concentration in the substrate caused a significantly higher accumulation of this metal in P. nameko. The addition of Ca (5 or 10 mM) stimulated Fe accumulation, just as Fe concentration in the substrate stimulated Ca accumulation, which pointed to a synergism between these metals. The obtained results show that the presence of Fe in the substrate may also promote K, Mg, Mn, Na, P, and S accumulation. In contrast, the addition of Ca stimulates and/or inhibits their content in fruit bodies. The phenolic and organic acids profile was poor. Only gallic, 4-hydroxybenzoic, sinapic and syringic acids (phenolics), as well as citric and succinic acids (LMWOAs), were quantified in some combinations in P. nameko fruiting bodies.

Zobrazit více v PubMed

Nguyen P.H., Scott S., Headey D., Singh N., Tran L.M., Menon P., Ruel M.T. The Double Burden of Malnutrition in India: Trends and Inequalities (2006–2016) PLoS ONE. 2021;16:e0247856. doi: 10.1371/journal.pone.0247856. PubMed DOI PMC

Barzegar F., Kamankesh M., Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. Food Rev. Int. 2021 doi: 10.1080/87559129.2021.1929303. DOI

Sellamuthu K.M., Malathi P. Biofortification of Crops to Overcome Malnutrition in India. Biot. Res. Today. 2021;3:402–405.

Poniedziałek B., Perkowska K., Rzymski P. Vitamins and Minerals Biofortification of Edible Plants. Wiley-Blackwell; Hoboken, NJ, USA: 2020. Food Fortification; pp. 27–44. DOI

Olson R., Gavin-Smith B., Ferraboschi C., Kraemer K., Davaasambuu G. Food Fortification: The Advantages, Disadvantages and Lessons from Sight and Life Programs. Nutrients. 2021;13:1118. doi: 10.3390/nu13041118. PubMed DOI PMC

Wakeel A., Farooq M., Bashir K., Ozturk L. Plant Macronutrient Use Efficiency Molecular and Genomic Perspectives in Crop Plants. Elsevier; Amsterdam, The Netherlands: 2018. Micronutrient Malnutrition and Biofortification: Recent Advances and Future Perspectives; pp. 225–243. DOI

Buturi C.V., Mauro R.P., Fogliano V., Leonardi C., Giuffrida F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods. 2021;10:223. doi: 10.3390/foods10020223. PubMed DOI PMC

Riaz N., Guerinot M.L. All Together Now: Regulation of the Iron Deficiency Response. J. Exp. Bot. 2021;72:2045–2055. doi: 10.1093/jxb/erab003. PubMed DOI PMC

Henjum S., Groufh-Jacobsen S., Stea T.H., Tonheim L.E., Almendingen K. Iron Status of Vegans, Vegetarians and Pescatarians in Norway. Biomolecules. 2021;11:454. doi: 10.3390/biom11030454. PubMed DOI PMC

Venkataramani V. Iron Homeostasis and Metabolism: Two Sides of a Coin. Adv. Exp. Med. Biol. 2021;1301:25–40. doi: 10.1007/978-3-030-62026-4_3. PubMed DOI

Pasricha S.-R., Tye-Din J., Muckenthaler M.U., Swinkels D.W. Iron Deficiency. Lancet. 2021;397:233–248. doi: 10.1016/S0140-6736(20)32594-0. PubMed DOI

Man Y., Xu T., Adhikari B., Zhou C., Wang Y., Wang B. Iron Supplementation and Iron-Fortified Foods: A Review. Crit. Rev. Food Sci. Nutr. 2021:1–22. doi: 10.1080/10408398.2021.1876623. PubMed DOI

Quintaes K.D., Barberá R., Cilla A. Iron Bioavailability in Iron-Fortified Cereal Foods: The Contribution of in Vitro Studies. Crit. Rev. Food Sci. Nutr. 2017;57:2028–2041. doi: 10.1080/10408398.2013.866543. PubMed DOI

Beinner M.A., Lamounier J.A., Tomaz C. Effect of Iron-Fortified Drinking Water of Daycare Facilities on the Hemoglobin Status of Young Children. J. Am. Coll. Nutr. 2013;24:107–114. doi: 10.1080/07315724.2005.10719451. PubMed DOI

Hekmat S., Mcmahon D.J. Manufacture and Quality of Iron-Fortified Yogurt. J. Dairy Sci. 1997;80:3114–3122. doi: 10.3168/jds.S0022-0302(97)76282-9. PubMed DOI

Larson L.M., Cyriac S., Djimeu E.W., Mbuya M.N.N., Neufeld L.M. Can Double Fortification of Salt with Iron and Iodine Reduce Anemia, Iron Deficiency Anemia, Iron Deficiency, Iodine Deficiency, and Functional Outcomes? Evidence of Efficacy, Effectiveness, and Safety. J. Nutr. 2021;151:15S–28S. doi: 10.1093/jn/nxaa192. PubMed DOI PMC

Hurrell R.F. Food Fortification in a Globalized World. Academic Press; London, UK: 2018. Efficacy and safety of iron fortification; pp. 196–212. DOI

Chopra H., Mishra A.K., Baig A.A., Mohanta T.K., Mohanta Y.K., Baek K.-H. Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J. Fungi. 2021;7:728. doi: 10.3390/jof7090728. PubMed DOI PMC

Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 2016;5:80. doi: 10.3390/foods5040080. PubMed DOI PMC

Yue G.G.-L., Lau C.B.-S., Leung P.-C. Medicinal Plants and Mushrooms with Immunomodulatory and Anticancer Properties—A Review on Hong Kong’s Experience. Molecules. 2021;26:2173. doi: 10.3390/molecules26082173. PubMed DOI PMC

Oyetayo V.O., Ogidi C.O., Bayode S.O., Enikanselu F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021:1–10. doi: 10.1007/S42360-021-00410-7. DOI

Windisch W. Interaction of Chemical Species with Biological Regulation of the Metabolism of Essential Trace Elements. Anal. Bioanal. Chem. 2001;372:421–425. doi: 10.1007/s00216-001-1117-6. PubMed DOI

Stamets P. Growing Gourmet and Medicinal Mushrooms Paul Stamets. Ten Speed Press; Berkeley, CA, USA: 2000.

Gąsecka M., Magdziak Z., Siwulski M., Jasińska A., Budzyńska S., Rzymski P., Kalač P., Niedzielski P., Pankiewicz J., Mleczek M. Effect of Thymus Vulgaris Post-Extraction Waste and Spent Coffee Grounds on the Quality of Cultivated Pleurotus Eryngii. J. Food Process. Preserv. 2020;44:e14648. doi: 10.1111/jfpp.14648. DOI

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI

Falniowski A. The Numerical Methods in Taxonomy. 1st ed. Wydawnictwo Uniwersytetu Jagiellońskiego; Kraków, Poland: 2003. Metody Numeryczne w Taksonomii.

Galili T. Dendextend: An R Package for Visualizing, Adjusting and Comparing Trees of Hierarchical Clustering. Bioinformatics. 2015;31:3718–3720. doi: 10.1093/bioinformatics/btv428. PubMed DOI PMC

World Health Organization . The Global Prevalence of Anaemia in 2011. World Health Organization; Geneva, Switzerland: 2015.

Benson C.S., Shah A., Stanworth S.J., Frise C.J., Spiby H., Lax S.J., Murray J., Klein A.A. The Effect of Iron Deficiency and Anaemia on Women’s Health. Anaesthesia. 2021;76:84–95. doi: 10.1111/anae.15405. PubMed DOI

Lynch S.R. Why Nutritional Iron Deficiency Persists as a Worldwide Problem. J. Nutr. 2011;141:763S–768S. doi: 10.3945/jn.110.130609. PubMed DOI

Hurrell R.F. Iron Fortification Practices and Implications for Iron Addition to Salt. J. Nutr. 2021;151:3S–14S. doi: 10.1093/jn/nxaa175. PubMed DOI PMC

Zięba P., Kała K., Włodarczyk A., Szewczyk A., Kunicki E., Sękara A., Muszyńska B. Selenium and Zinc Biofortification of Pleurotus Eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity. Molecules. 2020;25:889. doi: 10.3390/molecules25040889. PubMed DOI PMC

Rzymski P., Niedzielski P., Siwulski M., Mleczek M., Budzyńska S., Gąsecka M., Poniedziałek B. Lithium Biofortification of Medicinal Mushrooms Agrocybe Cylindracea and Hericium Erinaceus. J. Food Sci. Technol. 2017;54:2387–2393. doi: 10.1007/s13197-017-2679-4. PubMed DOI PMC

Gąsecka M., Mleczek M., Siwulski M., Niedzielski P. Phenolic Composition and Antioxidant Properties of Pleurotus Ostreatus and Pleurotus Eryngii Enriched with Selenium and Zinc. Eur. Food Res. Technol. 2015;242:723–732. doi: 10.1007/s00217-015-2580-1. DOI

Almeida S.M., Umeo S.H., Marcante R.C., Yokota M.E., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Mycelium of Pleurotus Ostreatus. Braz. J. Microbiol. 2015;46:195–200. doi: 10.1590/S1517-838246120130695. PubMed DOI PMC

Yokota M.E., Frison P.S., Marcante R.C., Jorge L.F., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A. Iron Translocation in Pleurotus Ostreatus Basidiocarps: Production, Bioavailability, and Antioxidant Activity. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr.15017888. PubMed DOI

Umeo S.H., Faria M.G.I., Vilande S.S.S., Dragunski D.C., do Valle J.S., Colauto N.B., Linde G.A. Iron and Zinc Mycelial Bioaccumulation in Agaricus Subrufescens Strains. Semina: Ciências Agrárias. 2019;40:2513–2522. doi: 10.5433/1679-0359.2019v40n6p2513. DOI

Meniqueti A.B., Ruiz S.P., Faria M.G.I., Valle J.S., Gonçalves A.C., Jr., Dragunski D.C., Colauto N.B., Linde G.A. Iron-Enriched Mycelia of Edible and Medicinal Basidiomycetes. Environ. Technol. 2020 doi: 10.1080/09593330.2020.1824023. PubMed DOI

Verna G., Sila A., Liso M., Mastronardi M., Chieppa M., Cena H., Campiglia P. Iron-Enriched Nutritional Supplements for the 2030 Pharmacy Shelves. Nutrients. 2021;13:378. doi: 10.3390/nu13020378. PubMed DOI PMC

Scheid S.S., Faria M.G.I., Velasquez L.G., do Valle J.S., Gonçalves A.C., Dragunski D.C., Colauto N.B., Linde G.A. Iron Biofortification and Availability in the Mycelial Biomass of Edible and Medicinal Basidiomycetes Cultivated in Sugarcane Molasses. Sci. Rep. 2020;10:12875. doi: 10.1038/s41598-020-69699-0. PubMed DOI PMC

Meniqueti A.B., Ruiz S.P., Faria M.G.I., do Valle J.S., Gonçalves A.C., Jr., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Lentinus Crinitus Mycelia Cultivated in Agroindustrial Byproducts. Waste Biomass Valorization. 2021;12:4965–4974. doi: 10.1007/s12649-021-01353-w. DOI

Gasecka M., Mleczek M., Siwulski M., Niedzielski P., Kozak L. The Effect of Selenium on Phenolics and Flavonoids in Selected Edible White Rot Fungi. LWT Food Sci. Technol. 2015;63:726–731. doi: 10.1016/j.lwt.2015.03.046. DOI

Lin S., Ching L.T., Ke X., Cheung P.C.K. Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms. Int. J. Med. Mushrooms. 2016;18:871–881. doi: 10.1615/IntJMedMushrooms.v18.i10.30. PubMed DOI

Wang B., Zhao N., Li J., Xu R., Wang T., Guo L., Ma M., Fan M., Wei X. Selenium-Enriched Lactobacillus Plantarum Improves the Antioxidant Activity and Flavor Properties of Fermented Pleurotus Eryngii. Food Chem. 2021;345 doi: 10.1016/j.foodchem.2020.128770. PubMed DOI

Vieira P.A.F., Gontijo D.C., Vieira B.C., Fontes E.A., de Assunção L.S., Leite J., Oliveira M.G.D.A., Kasuya M.C.M. Antioxidant Activities, Total Phenolics and Metal Contents in Pleurotus Ostreatus Mushrooms Enriched with Iron, Zinc or Lithium. LWT Food Sci. Technol. 2013;54:421–425. doi: 10.1016/j.lwt.2013.06.016. DOI

Li W., Chen W., Yang Y., Zhang J., Feng J., Yu H., Zhou S., Li X., Liu Y. Effects of Culture Substrates on Taste Component Content and Taste Quality of Lentinula Edodes. Int. J. Food Sci. Technol. 2017;52:981–991. doi: 10.1111/ijfs.13362. DOI

Yang Y., Gu Z., Liu Y.F., Zhou S., Zhang J.S. Determination of Seven Organic Acids in Edible Fungi by Reversed-Phase High Performance Liquid Chromatography. Mycosystema. 2013;32:1064–1070.

Ferreira I., Barros L., Abreu R. Antioxidants in Wild Mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI

Ribeiro B., Valentão P., Baptista P., Seabra R.M., Andrade P.B. Phenolic Compounds, Organic Acids Profiles and Antioxidative Properties of Beefsteak Fungus (Fistulina Hepatica) Food Chem. Toxicol. 2007;45:1805–1813. doi: 10.1016/j.fct.2007.03.015. PubMed DOI

Magdziak Z., Siwulski M., Mleczek M. Characteristics of Organic Acid Profiles in 16 Species of Wild Growing Edible Mushrooms. J. Environ. Sci. Health Part B. 2017;52:784–789. doi: 10.1080/03601234.2017.1356676. PubMed DOI

Karaman M., Stahl M., Vulić J., Vesić M., Čanadanović-Brunet J. Wild-Growing Lignicolous Mushroom Species as Sources of Novel Agents with Antioxidative and Antibacterial Potentials. Int. J. Food Sci. Nutr. 2014;65:311–319. doi: 10.3109/09637486.2013.860584. PubMed DOI

Cardoso R.V.C., Carocho M., Fernandes Â., Pinela J., Stojković D., Soković M., Zied D.C., Cobos J.D.V., González-Paramás A.M., Ferreira I.C.F.R., et al. Antioxidant and Antimicrobial Influence on Oyster Mushrooms (Pleurotus Ostreatus) from Substrate Supplementation of Calcium Silicate. Sustainability. 2021;13:5019. doi: 10.3390/su13095019. DOI

Stojković D.S., Kovačević-Grujičić N., Reis F.S., Davidović S., Barros L., Popović J., Petrović I., Pavić A., Glamočlija J., Ćirić A., et al. Chemical Composition of the Mushroom Meripilus Giganteus Karst. and Bioactive Properties of Its Methanolic Extract. LWT Food Sci. Technol. 2017;79:454–462. doi: 10.1016/j.lwt.2017.01.045. DOI

National Health Service Vitamins and Minerals—NHS. [(accessed on 2 October 2021)]. Available online: https://www.nhs.uk/conditions/vitamins-and-minerals/

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015;13:115. doi: 10.2903/j.efsa.2015.4254. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...