Biofortification of Three Cultivated Mushroom Species with Three Iron Salts-Potential for a New Iron-Rich Superfood

. 2022 Apr 04 ; 27 (7) : . [epub] 20220404

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408727

Mushrooms fortified with iron (Fe) can offer a promising alternative to counter the worldwide deficiency problem. However, the factors that may influence the efficiency of fortification have not yet been fully investigated. The aim of this study was to compare the effects of three Fe forms (FeCl3 6H2O, FeSO4 7H2O, or FeHBED) in three concentrations (5, 10, or 50 mM) for three mushroom species (Pleurotus eryngii, P. ostreatus, or Pholiota nameko) on their chemical composition, phenolic compounds, and organic acid production. The most effective metal accumulation of all the investigated species was for the 50 mM addition. FeCl3 6H2O was the most favorable additive for P. eryngii and P. nameko (up to 145 and 185% Fe more than in the control, respectively) and FeHBED for P. ostreatus (up to 108% Fe more than in control). Additionally, P. nameko showed the highest Fe accumulation among studied species (89.2 ± 7.51 mg kg-1 DW). The creation of phenolic acids was generally inhibited by Fe salt supplementation. However, an increasing effect on phenolic acid concentration was observed for P. ostreatus cultivated at 5 mM FeCl3 6H2O and for P. eryngii cultivated at 5 mM FeCl3 6H2O and 5 mM FeSO4 7H2O. In the case of organic acids, a similar situation was observed. For P. ostreatus, FeSO4 7H2O and FeHBED salts increased the formation of the determined organic acids in fruiting bodies. P. eryngii and P. nameko were characterized by a much lower content of organic acids in the systems supplemented with Fe. Based on the obtained results, we recommend starting fortification by preliminarily indicating which form of the element is preferred for the species of interest for supplementation. It also seems that using an additive concentration of 50 mM or higher is most effective.

Zobrazit více v PubMed

Johnson B.B., Reinhold J., Holmes T.L., Moore J.A., Cowell V., Bernardo A.S., Rushworth S.A., Vassiliou V., Smith J.G.W. Modelling Metabolic Shifts during Cardiomyocyte Differentiation, Iron Deficiency and Transferrin Rescue Using Human Pluripotent Stem Cells. Metabolites. 2022;12:9. doi: 10.3390/metabo12010009. PubMed DOI PMC

Camaschella C. New Insights into Iron Deficiency and Iron Deficiency Anemia. Blood Rev. 2017;31:225–233. doi: 10.1016/j.blre.2017.02.004. PubMed DOI

Blanco-Rojo R., Vaquero M.P. Iron Bioavailability from Food Fortification to Precision Nutrition. A Review. Innov. Food Sci. Emerg. Technol. 2019;51:126–138. doi: 10.1016/j.ifset.2018.04.015. DOI

Moll R., Davis B. Iron, Vitamin B 12 and Folate. Medicine. 2017;45:198–203. doi: 10.1016/j.mpmed.2017.01.007. DOI

Muckenthaler M.U., Rivella S., Hentze M.W., Galy B. A Red Carpet for Iron Metabolism. Cell. 2017;168:344–361. doi: 10.1016/j.cell.2016.12.034. PubMed DOI PMC

Comín-Colet J., Frustaci A., Alnuwaysir R.I.S., Hoes M.F., van Veldhuisen D.J., van der Meer P., Beverborg N.G. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021;11:125. doi: 10.3390/JCM11010125. PubMed DOI PMC

Pettit K., Rowley J., Brown N. Iron Deficiency. Paediatr. Child Health. 2011;21:339–343. doi: 10.1016/j.paed.2011.03.006. DOI

van Dalen D.H., Kragten J.A., Emans M.E., van Ofwegen-Hanekamp C.E.E., Klaarwater C.C.R., Spanjers M.H.A., Hendrick R., van Deursen C.T.B.M., Brunner-La Rocca H.P. Acute heart failure and iron deficiency: A prospective, multicentre, observational study. ESC Heart Failure. 2022;9:398–407. doi: 10.1002/ehf2.13737. PubMed DOI PMC

Kumar A., Sharma E., Marley A., Samaan M.A., Brookes M.J. Iron Deficiency Anaemia: Pathophysiology, Assessment, Practical Management. BMJ Open Gastroenterol. 2022;9:e000759. doi: 10.1136/bmjgast-2021-000759. PubMed DOI PMC

WHO . The Global Prevalence of Anaemia in 2011. WHO; Geneva, Switzerland: 2015.

Saini R.K., Nile S.H., Keum Y.S. Food Science and Technology for Management of Iron Deficiency in Humans: A Review. Trends Food Sci. Technol. 2016;53:13–22. doi: 10.1016/j.tifs.2016.05.003. DOI

Li S., Guo T., Guo W., Cui X., Zeng M., Wu H. Polyphosphates as an Effective Vehicle for Delivery of Bioavailable Nanoparticulate Iron(III) Food Chem. 2022;373:131477. doi: 10.1016/j.foodchem.2021.131477. PubMed DOI

Zimmermann M.B., Hurrell R.F. Nutritional Iron Deficiency. Lancet. 2007;370:511–520. doi: 10.1016/S0140-6736(07)61235-5. PubMed DOI

Hurrell R.F. Preventing Iron Deficiency through Food Fortification. Nutr. Rev. 1997;55:210–222. doi: 10.1111/j.1753-4887.1997.tb01608.x. PubMed DOI

Haas J.D., Luna S.V., Lung’aho M.G., Wenger M.J., Murray-Kolb L.E., Beebe S., Gahutu J.B., Egli I.M. Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. J. Nutr. 2016;146:1586–1592. doi: 10.3945/jn.115.224741. PubMed DOI

Márquez-Quiroz C., De-la-Cruz-Lázaro E., Osorio-Osorio R., Sánchez-Chávez E. Biofortification of Cowpea Beans with Iron: Iron’s Influence on Mineral Content and Yield. J. Soil Sci. Plant Nutr. 2015;15:839–847. doi: 10.4067/S0718-95162015005000058. DOI

Finkelstein J.L., Mehta S., Udipi S.A., Ghugre P.S., Luna S.V., Wenger M.J., Murray-Kolb L.E., Przybyszewski E.M., Haas J.D. A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India. J. Nutr. 2015;145:1576–1581. doi: 10.3945/jn.114.208009. PubMed DOI

Losso J.N., Karki N., Muyonga J., Wu Y., Fusilier K., Jacob G., Yu Y., Rood J.C., Finley J.W., Greenway F.L. Iron Retention in Iron-Fortified Rice and Use of Iron-Fortified Rice to Treat Women with Iron Deficiency: A Pilot Study. BBA Clin. 2017;8:78–83. doi: 10.1016/j.bbacli.2017.09.001. PubMed DOI PMC

Makowska A., Zielińska-Dawidziak M., Niedzielski P., Michalak M. Effect of Extrusion Conditions on Iron Stability and Physical and Textural Properties of Corn Snacks Enriched with Soybean Ferritin. Int. J. Food Sci. Technol. 2018;53:296–303. doi: 10.1111/ijfs.13585. DOI

Cakmak I., Pfeiffer W.H., McClafferty B. REVIEW: Biofortification of Durum Wheat with Zinc and Iron. Cereal Chem. J. 2010;87:10–20. doi: 10.1094/CCHEM-87-1-0010. DOI

Rzymski P., Mleczek M., Niedzielski P., Siwulski M., Gasecka M. Potential of Cultivated Ganoderma Lucidum Mushrooms for the Production of Supplements Enriched with Essential Elements. J. Food Sci. 2016;81:C587–C592. doi: 10.1111/1750-3841.13212. PubMed DOI

Niedzielski P., Mleczek M., Siwulski M., Gąsecka M., Kozak L., Rissmann I., Mikołajczak P. Efficacy of Supplementation of Selected Medicinal Mushrooms with Inorganic Selenium Salts. J. Environ. Sci. Health Part B. 2014;49:929–937. doi: 10.1080/03601234.2014.951576. PubMed DOI

De Assunão L.S., da Luz J.M.R., da Silva M.D.C.S., Vieira P.A.F., Bazzolli D.M.S., Vanetti M.C.D., Kasuya M.C.M. Enrichment of Mushrooms: An Interesting Strategy for the Acquisition of Lithium. Food Chem. 2012;134:1123–1127. doi: 10.1016/j.foodchem.2012.03.044. PubMed DOI

Fontes Vieira P.A., Gontijo D.C., Vieira B.C., Fontes E.A.F., de Assunção L.S., Leite J.P.V., Oliveira M.G.d.A., Kasuya M.C.M. Antioxidant Activities, Total Phenolics and Metal Contents in Pleurotus Ostreatus Mushrooms Enriched with Iron, Zinc or Lithium. LWT Food Sci. Technol. 2013;54:421–425. doi: 10.1016/j.lwt.2013.06.016. DOI

Ogidi O.C., Dias Nunes M., Oyetayo V.O., Akinyele B.J., Catarina M., Kasuya M. Mycelial Growth, Biomass Production and Iron Uptake by Mushrooms of Pleurotus Species Cultivated on Urochloa Decumbens (Stapf) R. D. Webster. J. Food Res. 2016;5:13. doi: 10.5539/jfr.v5n3p13. DOI

Almeida S.M., Umeo S.H., Marcante R.C., Yokota M.E., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Mycelium of Pleurotus Ostreatus. Braz. J. Microbiol. 2015;46:195–200. doi: 10.1590/S1517-838246120130695. PubMed DOI PMC

Petrović J., Glamočlija J., Stojković D., Ćirić A., Barros L., Ferreira I.C.F.R., Soković M. Nutritional Value, Chemical Composition, Antioxidant Activity and Enrichment of Cream Cheese with Chestnut Mushroom Agrocybe aegerita (Brig.) Sing. J. Food Sci. Technol. 2015;52:6711–6718. doi: 10.1007/s13197-015-1783-6. PubMed DOI PMC

Popovic V., Zivkovic J., Davidovic S., Stevanovic M., Stojkovic D. Mycotherapy of Cancer: An Update on Cytotoxic and Antitumor Activities of Mushrooms, Bioactive Principles and Molecular Mechanisms of Their Action. Curr. Top. Med. Chem. 2013;13:2791–2806. doi: 10.2174/15680266113136660198. PubMed DOI

Stojković D., Reis F.S., Barros L., Glamočlija J., irić A., van Griensven L.J.I.D., Soković M., Ferreira I.C.F.R. Nutrients and Non-Nutrients Composition and Bioactivity of Wild and Cultivated Coprinus comatus (O.F.Müll.) Pers. Food Chem. Toxicol. 2013;59:289–296. doi: 10.1016/j.fct.2013.06.017. PubMed DOI

Reis F.S., Martins A., Barros L., Ferreira I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012;50:1201–1207. doi: 10.1016/j.fct.2012.02.013. PubMed DOI

Muszyńska B., Sukowska-Ziaja K., Ekiert H. Phenolic Acids in Selected Edible Basidiomycota Species: Armillaria Mellea, Boletus Badius, Boletus Edulis, Cantharellus Cibarius, Lactarius Deliciosus and Pleurotus Ostreatus. Acta Sci. Pol. Hortorum Cultus. 2013;12:107–116.

Moon M.K., Lee Y.J., Kim J.S., Kang D.G., Lee H.S. Effect of Caffeic Acid on Tumor Necrosis Factor-Alpha-Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells. Biol. Pharm. Bull. 2009;32:1371–1377. doi: 10.1248/bpb.32.1371. PubMed DOI

Stanikunaite R., Khan S.I., Trappe J.M., Ross S.A. Cyclooxygenase-2 Inhibitory and Antioxidant Compounds from the Truffle Elaphomyces Granulatus. Phytother. Res. 2009;23:575–578. doi: 10.1002/ptr.2698. PubMed DOI

Ferreira I.C.F.R., Barros L., Abreu R.M.V. Antioxidants in Wild Mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI

Çayan F., Tel G., Duru M.E., Öztürk M., Türkoğlu A., Harmandar M. Application of GC, GC-MSD, ICP-MS and Spectrophotometric Methods for the Determination of Chemical Composition and In Vitro Bioactivities of Chroogomphus Rutilus: The Edible Mushroom Species. Food Anal. Methods. 2013;7:449–458. doi: 10.1007/s12161-013-9644-2. DOI

Silva B.M., Andrade P.B., Valentão P., Ferreres F., Seabra R.M., Ferreira M.A. Quince (Cydonia oblonga Miller) Fruit (Pulp, Peel, and Seed) and Jam: Antioxidant Activity. J. Agric. Food Chem. 2004;52:4705–4712. doi: 10.1021/jf040057v. PubMed DOI

Lee D.N., Liu S.R., Chen Y.T., Wang R.C., Lin S.Y., Weng C.F. Effects of Diets Supplemented with Organic Acids and Nucleotides on Growth, Immune Responses and Digestive Tract Development in Weaned Pigs. J. Anim. Physiol. Anim. Nutr. 2007;91:508–518. doi: 10.1111/j.1439-0396.2007.00684.x. PubMed DOI

Zhang H., Lu T., Shang Z., Li Y., He J., Liu S., Li D., Zhou Y., Qi Z. Transport of Cd2+ through Saturated Porous Media: Insight into the Effects of Low-Molecular-Weight Organic Acids. Water Res. 2020;168:115182. doi: 10.1016/j.watres.2019.115182. PubMed DOI

Liu J., Jia L., Kan J., Jin C. In Vitro and in Vivo Antioxidant Activity of Ethanolic Extract of White Button Mushroom (Agaricus Bisporus) Food Chem. Toxicol. 2013;51:310–316. doi: 10.1016/j.fct.2012.10.014. PubMed DOI

Gąsecka M., Siwulski M., Mleczek M. Evaluation of Bioactive Compounds Content and Antioxidant Properties of Soil-Growing and Wood-Growing Edible Mushrooms. J. Food Processing Preserv. 2018;42:e13386. doi: 10.1111/jfpp.13386. DOI

Magdziak Z., Siwulski M., Mleczek M. Characteristics of Organic Acid Profiles in 16 Species of Wild Growing Edible Mushrooms. J. Environ. Sci. Health Part B. 2017;52:784–789. doi: 10.1080/03601234.2017.1356676. PubMed DOI

Partearroyo T., Varela-Moreiras G., Samson K.L.I., Fischer J.A.J., Roche M.L. Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. Nutrients. 2022;14:224. doi: 10.3390/NU14010224. PubMed DOI PMC

Verna G., Sila A., Liso M., Mastronardi M., Chieppa M., Cena H., Campiglia P. Iron-Enriched Nutritional Supplements for the 2030 Pharmacy Shelves. Nutrients. 2021;13:378. doi: 10.3390/nu13020378. PubMed DOI PMC

Lynch S.R. Why Nutritional Iron Deficiency Persists as a Worldwide Problem. J. Nutr. 2011;141:763S–768S. doi: 10.3945/jn.110.130609. PubMed DOI

Jagdale Y.D., Mahale S.V., Zohra B., Nayik G.A., Dar A.H., Ali Khan K., Abdi G., Karabagias I.K. Nutritional Profile and Potential Health Benefits of Super Foods: A Review. Sustainability. 2021;13:9240. doi: 10.3390/su13169240. DOI

Gupta E., Mishra P. Functional Food with Some Health Benefits, So Called Superfood: A Review. Curr. Nutr. Food Sci. 2021;17:144–166. doi: 10.2174/1573401316999200717171048. DOI

Zięba P., Kała K., Włodarczyk A., Szewczyk A., Kunicki E., Sękara A., Muszyńska B. Selenium and Zinc Biofortification of Pleurotus Eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity. Molecules. 2020;25:889. doi: 10.3390/molecules25040889. PubMed DOI PMC

Rzymski P., Niedzielski P., Siwulski M., Mleczek M., Budzyńska S., Gąsecka M., Poniedziałek B. Lithium Biofortification of Medicinal Mushrooms Agrocybe Cylindracea and Hericium Erinaceus. J. Food Sci. Technol. 2017;54:2387–2393. doi: 10.1007/s13197-017-2679-4. PubMed DOI PMC

Gąsecka M., Mleczek M., Siwulski M., Niedzielski P. Phenolic Composition and Antioxidant Properties of Pleurotus Ostreatus and Pleurotus Eryngii Enriched with Selenium and Zinc. Eur. Food Res. Technol. 2015;242:723–732. doi: 10.1007/s00217-015-2580-1. DOI

Budzyńska S., Siwulski M., Magdziak Z., Budka A., Gąsecka M., Kalač P., Rzymski P., Niedzielski P., Mleczek M. Influence of Iron Addition (Alone or with Calcium) to Elements Biofortification and Antioxidants in Pholiota Nameko. Plants. 2021;10:2275. doi: 10.3390/plants10112275. PubMed DOI PMC

Siwulski M., Budzyńska S., Rzymski P., Gąsecka M., Niedzielski P., Kalač P., Mleczek M. The Effects of Germanium and Selenium on Growth, Metalloid Accumulation and Ergosterol Content in Mushrooms: Experimental Study in Pleurotus Ostreatus and Ganoderma Lucidum. Eur. Food Res. Technol. 2019;245:1799–1810. doi: 10.1007/s00217-019-03299-9. DOI

Ho L.-H., Tan T.-C., Chong L.-C. Designer Foods as an Effective Approach to Enhance Disease Preventative Properties of Food through Its Health Functionalities. In: Bhat R., editor. Future Foods. Academic Press; Cambridge, MA, USA: 2022. pp. 469–497. DOI

Meniqueti A.B., Ruiz S.P., Faria M.G.I., do Valle J.S., Gonçalves A.C., Dragunski D.C., Colauto N.B., Linde G.A. Iron Bioaccumulation in Lentinus Crinitus Mycelia Cultivated in Agroindustrial Byproducts. Waste Biomass Valorization. 2021;12:4965–4974. doi: 10.1007/s12649-021-01353-w. DOI

Meniqueti A.B., Ruiz S.P., Faria M.G.I., do Valle J.S., Gonçalves A.C., Dragunski D.C., Colauto N.B., Linde G.A. Iron-Enriched Mycelia of Edible and Medicinal Basidiomycetes. Environ. Technol. 2020;43:1248–1254. doi: 10.1080/09593330.2020.1824023. PubMed DOI

Oyetayo V.O., Ogidi C.O., Bayode S.O., Enikanselu F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus Pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021;74:901–910. doi: 10.1007/s42360-021-00410-7. DOI

Scheid S.S., Faria M.G.I., Velasquez L.G., do Valle J.S., Gonçalves A.C., Dragunski D.C., Colauto N.B., Linde G.A. Iron Biofortification and Availability in the Mycelial Biomass of Edible and Medicinal Basidiomycetes Cultivated in Sugarcane Molasses. Sci. Rep. 2020;10:12875. doi: 10.1038/s41598-020-69699-0. PubMed DOI PMC

Umeo S.H., Faria M.G.I., Dragunski D.C., do Valle J.S., Colauto N.B., Linde G.A. Iron Or Zinc Bioaccumulated In Mycelial Biomass Of Edible Basidiomycetes. An. Acad. Bras. Ciências. 2020;92:1–10. doi: 10.1590/0001-3765202020191350. PubMed DOI

Condé V.F., Oliveira J.E.Z., Oliveira D.M.F. Pleurotus Ostreatus (Jacq.) P. Kumm. Flour (Hiratake Mushroom) Enriched in Iron. Ciência Nat. 2017;39:1. doi: 10.5902/2179460X21437. DOI

Connorton J.M., Balk J. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. Plant Cell Physiol. 2019;60:1447–1456. doi: 10.1093/pcp/pcz079. PubMed DOI PMC

Shumayla, Upadhyay S.K. Mechanism of Iron Uptake and Homeostasis in Plants. In: Upadhyay S.K., editor. Cation Transporters in Plants. Academic Press; Cambridge, MA, USA: 2022. pp. 147–165. DOI

Sida-Arreola J.P., Sánchez E., Ávila-Quezada G.D., Zamudio-Flores P.B., Acosta-Muñiz C.H. Can Improve Iron Biofortification Antioxidant Response, Yield and Nutritional Quality in Green Bean? Agric. Sci. 2015;6:1324–1332. doi: 10.4236/as.2015.611127. DOI

Zang L.Y., Cosma G., Gardner H., Shi X., Castranova V., Vallyathan V. Effect of Antioxidant Protection by P-Coumaric Acid on Low-Density Lipoprotein Cholesterol Oxidation. Am. J. Physiol. Cell Physiol. 2000;279:C954–C960. doi: 10.1152/ajpcell.2000.279.4.C954. PubMed DOI

Kiliç I., Yeşiloǧlu Y. Spectroscopic Studies on the Antioxidant Activity of P-Coumaric Acid. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2013;115:719–724. doi: 10.1016/j.saa.2013.06.110. PubMed DOI

Przybysz A., Wrochna M., Małecka-Przybysz M., Gawrońska H., Gawroński S.W. Vegetable Sprouts Enriched with Iron: Effects on Yield, ROS Generation and Antioxidative System. Sci. Hortic. 2016;203:110–117. doi: 10.1016/j.scienta.2016.03.017. DOI

Li K., Hu G., Yu S., Tang Q., Liu J. Effect of the Iron Biofortification on Enzymes Activities and Antioxidant Properties in Germinated Brown Rice. J. Food Meas. Charact. 2018;12:789–799. doi: 10.1007/s11694-017-9693-0. DOI

Dias D.M., Kolba N., Binyamin D., Ziv O., Nutti M.R., Martino H.S.D., Glahn R.P., Koren O., Tako E. Iron Biofortified Carioca Bean (Phaseolus Vulgaris L.)—Based Brazilian Diet Delivers More Absorbable Iron and Affects the Gut Microbiota In Vivo (Gallus Gallus) Nutrients. 2018;10:1970. doi: 10.3390/nu10121970. PubMed DOI PMC

Tako E., Beebe S.E., Reed S., Hart J.J., Glahn R.P. Polyphenolic Compounds Appear to Limit the Nutritional Benefit of Biofortified Higher Iron Black Bean (Phaseolus Vulgaris L.) Nutr. J. 2014;13:28. doi: 10.1186/1475-2891-13-28. PubMed DOI PMC

Lesjak M., Hoque R., Balesaria S., Skinner V., Debnam E.S., Srai S.K.S., Sharp P.A. Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression In Vivo and In Vitro. PLoS ONE. 2014;9:e102900. doi: 10.1371/journal.pone.0102900. PubMed DOI PMC

Petry N., Egli I., Zeder C., Walczyk T., Hurrell R. Polyphenols and Phytic Acid Contribute to the Low Iron Bioavailability from Common Beans in Young Women. J. Nutr. 2010;140:1977–1982. doi: 10.3945/jn.110.125369. PubMed DOI

Kakoti M., Hazarika D.J., Kumar A., Barooah M., Modi M.K., Bhattacharyya A., Boro R.C. Genetic Diversity and DNA Barcoding of Wild Mushrooms from Northeast India. Iran. J. Sci. Technol. Trans. A: Sci. 2021;45:469–479. doi: 10.1007/s40995-021-01067-7. DOI

Silva B.M., Andrade P.B., Gonçalves A.C., Seabra R.M., Oliveira M.B., Ferreira M.A. Influence of Jam Processing upon the Contents of Phenolics, Organic Acids and Free Amino Acids in Quince Fruit (Cydonia oblonga Miller) Eur. Food Res. Technol. 2004;218:385–389. doi: 10.1007/s00217-003-0845-6. DOI

Wagay J.A., Alanazi A.M., Vyas D., Pala S.A., Rahman Q.I. Antioxidant and Organic Acid Evaluation of Geaster Saccatum Mushroom by Chemical and Electrochemical Assay at Carbon Nanotube Paste Electrode. J. King Saud Univ. Sci. 2021;33:101336. doi: 10.1016/j.jksus.2020.101336. DOI

Siwulski M., Budka A., Rzymski P., Gąsecka M., Kalač P., Budzyńska S., Magdziak Z., Niedzielski P., Mleczek P., Mleczek M. Worldwide Basket Survey of Multielemental Composition of White Button Mushroom Agaricus Bisporus. Chemosphere. 2020;239:124718. doi: 10.1016/j.chemosphere.2019.124718. PubMed DOI

Harmens H., Koevoets P.L.M., Verkleij J.A.C., Ernst W.H.O. The Role of Low Molecular Weight Organic Acids in the Mechanism of Increased Zinc Tolerance in Silene Vulgaris (Moench) Garcke. New Phytol. 1994;126:615–621. doi: 10.1111/j.1469-8137.1994.tb02956.x. DOI

Ribeiro B., Andrade P.B., Baptista P., Barros L., Ferreira I.C.F.R., Seabra R.M., Valentão P. Leucopaxillus Giganteus Mycelium: Effect of Nitrogen Source on Organic Acids and Alkaloids. J. Agric. Food Chem. 2008;56:4769–4774. doi: 10.1021/jf8001526. PubMed DOI

Stamets P. Growing Gourmet and Medicinal Mushrooms. 3rd ed. Ten Speed Press; Berkeley, CA, USA: 2000.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...