Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy

. 2021 Oct 28 ; 11 (11) : . [epub] 20211028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835654

Grantová podpora
POWR.03.02.00-00-I004/16 EU

Poly(ε-caprolactone) (PCL) is a biocompatible resorbable material, but its use is limited due to the fact that it is characterized by the lack of cell adhesion to its surface. Various chemical and physical methods are described in the literature, as well as modifications with various nanoparticles aimed at giving it such surface properties that would positively affect cell adhesion. Nanomaterials, in the form of membranes, were obtained by the introduction of multi-walled carbon nanotubes (MWCNTs and functionalized nanotubes, MWCNTs-f) as well as electro-spun carbon nanofibers (ESCNFs, and functionalized nanofibers, ESCNFs-f) into a PCL matrix. Their properties were compared with that of reference, unmodified PCL membrane. Human osteoblast-like cell line, U-2 OS (expressing green fluorescent protein, GFP) was seeded on the evaluated nanomaterial membranes at relatively low confluency and cultured in the standard cell culture conditions. The attachment and the growth of the cell populations on the polymer and nanocomposite samples were monitored throughout the first week of culture with fluorescence microscopy. Simultaneously, Raman microspectroscopy was also used to track the dependence of U-2 OS cell development on the type of nanomaterial, and it has proven to be the best method for the early detection of nanomaterial/cell interactions. The differentiation of interactions depending on the type of nanoadditive is indicated by the ν(COC) vibration range, which indicates the interaction with PCL membranes with carbon nanotubes, while it is irrelevant for PCL with carbon nanofibers, for which no changes are observed. The vibration range ω(CH2) indicates the interaction for PCL with carbon nanofibers with seeded cells. The crystallinity of the area ν(C=O) increases for PCL/MWCNTs and for PCL/MWCNTs-f, while it decreases for PCL/ESCNFs and for PCL/ESCNFs-f with seeded cells. The crystallinity of the membranes, which is determined by Raman microspectroscopy, allows for the assessment of polymer structure changes and their degradability caused by the secretion of cell products into the ECM and the differentiation of interactions depending on the carbon nanostructure. The obtained nanocomposite membranes are promising bioactive materials.

Zobrazit více v PubMed

Daar A.S., Greenwood H.L. A proposed definition of regenerative medicine. J. Tissue Eng. Regen. Med. 2007;1:179–184. doi: 10.1002/term.20. PubMed DOI

Mason C., Dunnill P. A brief definition of regenerative medicine. Regen. Med. 2008;3:1–5. doi: 10.2217/17460751.3.1.1. PubMed DOI

Atala A. Regenerative medicine strategies. J. Pediatr. Surg. 2012;47:17–28. doi: 10.1016/j.jpedsurg.2011.10.013. PubMed DOI

Zhang L., Webster T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today. 2009;4:66–80. doi: 10.1016/j.nantod.2008.10.014. DOI

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI

Khang D., Carpenter J., Chun Y.W., Pareta R., Webster T.J. Nanotechnology for regenerative medicine. Biomed. Microdevices. 2010;12:575–587. doi: 10.1007/s10544-008-9264-6. PubMed DOI

Burg K.J.L., Porter S., Kellam J.F. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–2359. doi: 10.1016/S0142-9612(00)00102-2. PubMed DOI

Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI

Farokhi M., Mottaghitalab F., Samani S., Shokrgozar M.A., Kundu S.C., Reis R.L., Fatahi Y., Kaplan D.L. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 2018;36:68–91. doi: 10.1016/j.biotechadv.2017.10.001. PubMed DOI

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Ge Z., Jin Z., Cao T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 2008;3:22001. doi: 10.1088/1748-6041/3/2/022001. PubMed DOI

Salinas A.J., Esbrit P., Vallet-Regí M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013;1:40–51. doi: 10.1039/C2BM00071G. PubMed DOI

Rogel M.R., Qiu H., Ameer G.A. The role of nanocomposites in bone regeneration. J. Mater. Chem. 2008;18:4233–4241. doi: 10.1039/b804692a. DOI

Sheikh Z., Najeeb S., Khurshid Z., Verma V., Rashid H., Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8:5744–5794. doi: 10.3390/ma8095273. PubMed DOI PMC

Taddei P., Di Foggia M., Causa F., Ambrosio L., Fagnano C. In vitro bioactivity of poly(ε-caprolactone)-apatite (PCL-AP) scaffolds for bone tissue engineering: The influence of the PCL/AP ratio. Int. J. Artif. Organs. 2006;29:719–725. doi: 10.1177/039139880602900712. PubMed DOI

White A.A., Best S.M., Kinloch I.A. Hydroxyapatite-carbon nanotube composites for biomedical applications: A review. Int. J. Appl. Ceram. Technol. 2007;4:1–13. doi: 10.1111/j.1744-7402.2007.02113.x. DOI

Paluszkiewicz C., Wesełucha-Birczyńska A., Stodolak-Zych E., Hasik M. 2D IR correlation analysis of chitosan-MMT nanocomposite system. Vib. Spectrosc. 2012;60:185–188. doi: 10.1016/j.vibspec.2011.12.004. DOI

Abedalwafa M., Wang F., Wang L., Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci. 2013;34:123–140.

Tyan H.L., Wu C.Y., Wei K.H. Effect of montmorillonite on thermal and moisture absorption properties of polyimide of different chemical structures. J. Appl. Polym. Sci. 2001;81:1742–1747. doi: 10.1002/app.1606. DOI

Wesełucha-Birczyńska A., Świętek M., Sołtysiak E., Galiński P., Płachta Ł., Piekara K., Błazewicz M. Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst. 2015;140:2311–2320. doi: 10.1039/C4AN02284J. PubMed DOI

Wesełucha-Birczyńska A., Morajka K., Stodolak-Zych E., Długoń E., Dużyja M., Lis T., Gubernat M., Ziąbka M., Błażewicz M. Raman studies of the interactions of fibrous carbon nanomaterials with albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;196:262–267. doi: 10.1016/j.saa.2018.02.027. PubMed DOI

Wesełucha-Birczyńska A., Stodolak-Zych E., Piś W., Długoń E., Benko A., Błażewicz M. A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD). 2D correlation analysis. J. Mol. Struct. 2016;1124:61–70. doi: 10.1016/j.molstruc.2016.04.050. DOI

Tran P.A., Zhang L., Webster T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1097–1114. doi: 10.1016/j.addr.2009.07.010. PubMed DOI

Fraczek-Szczypta A., Dlugon E., Weselucha-Birczynska A., Nocun M., Blazewicz M. Multi walled carbon nanotubes deposited on metal substrate using EPD technique. A spectroscopic study. J. Mol. Struct. 2013;1040:238–245. doi: 10.1016/j.molstruc.2013.03.010. DOI

Wesełucha-Birczyńska A., Frączek-Szczypta A., Długoń E., Paciorek K., Bajowska A., Kościelna A., Błażewicz M. Application of Raman spectroscopy to study of the polymer foams modified in the volume and on the surface by carbon nanotubes. Vib. Spectrosc. 2014;72:50–56. doi: 10.1016/j.vibspec.2014.02.009. DOI

Kołodziej A., Długoń E., Świętek M., Ziąbka M., Dawiec E., Gubernat M., Michalec M., Wesełucha-Birczyńska A. A Raman Spectroscopic Analysis of Polymer Membranes with Graphene Oxide and Reduced Graphene Oxide. J. Compos. Sci. 2021;5:20. doi: 10.3390/jcs5010020. DOI

Hopley E.L., Salmasi S., Kalaskar D.M., Seifalian A.M. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 2014;32:1000–1014. doi: 10.1016/j.biotechadv.2014.05.003. PubMed DOI

Khatri Z., Nakashima R., Mayakrishnan G., Lee K.H., Park Y.H., Wei K., Kim I.S. Preparation and characterization of electrospun poly(ε-caprolactone)-poly(l-lactic acid) nanofiber tubes. J. Mater. Sci. 2013;48:3659–3664. doi: 10.1007/s10853-013-7161-8. DOI

Kriparamanan R., Aswath P., Zhou A., Tang L., Nguyen K.T. Nanotopography: Cellular responses to nanostructured materials. J. Nanosci. Nanotechnol. 2006;6:1905–1919. doi: 10.1166/jnn.2006.330. PubMed DOI

Wesełucha-Birczyńska A., Moskal P., Dużyja M., Stodolak-Zych E., Długoń E., Kluska S., Sacharz J., Błażewicz M. 2D correlation Raman spectroscopy of model micro- and nano-carbon layers in interactions with albumin, human and animal. J. Mol. Struct. 2018;1171:587–593. doi: 10.1016/j.molstruc.2018.06.049. DOI

Wesełucha-Birczyńska A., Stodolak-Zych E., Turrell S., Cios F., Krzuś M., Długoń E., Benko A., Niemiec W., Błazewicz M. Vibrational spectroscopic analysis of a metal/carbon nanotube coating interface and the effect of its interaction with albumin. Vib. Spectrosc. 2016;85:185–195. doi: 10.1016/j.vibspec.2016.04.008. DOI

Kołodziej A., Wesełucha-Birczyńska A., Moskal P., Stodolak-zych E., Dużyja M., Długoń E., Sacharz J., Błażewicz M. 2D-Raman Correlation Spectroscopy as a Method to Recognize of the Interaction at the Interface of Carbon Layer and Albumin. J. Autom. Mob. Robot. Intell. Syst. 2019;13 doi: 10.14313/JAMRIS/3-2019/30. DOI

Wesełucha-Birczyńska A., Kołodziej A., Świętek M., Moskal P., Skalniak Ł., Długoń E., Błażewicz M. Does 2D correlation Raman spectroscopy distinguish polymer nanomaterials due to the nanoaddition? J. Mol. Struct. 2020;1217:128342. doi: 10.1016/j.molstruc.2020.128342. DOI

Kołodziej A., Wesełucha-Birczyńska A., Świętek M., Skalniak Ł., Błażewicz M. A 2D-Raman correlation spectroscopy study of the interaction of the polymer nanocomposites with carbon nanotubes and human osteoblast-like cells interface. J. Mol. Struct. 2020;1212 doi: 10.1016/j.molstruc.2020.128135. DOI

Zaera F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 2012;112:2920–2986. doi: 10.1021/cr2002068. PubMed DOI

Benko A., Przekora A., Wesełucha-Birczyńska A., Nocuń M., Ginalska G., Błażewicz M. Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: Physicochemical and biological characterization. Appl. Phys. A Mater. Sci. Process. 2016;122 doi: 10.1007/s00339-016-9984-z. DOI

Musiol P., Szatkowski P., Gubernat M., Weselucha-Birczynska A., Blazewicz S. Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers. Ceram. Int. 2016;42:11603–11610. doi: 10.1016/j.ceramint.2016.04.055. DOI

Panek A., Frączek-Szczypta A., Długoń E., Nocuń M., Paluszkiewicz C., Błażewicz M. Genotoxicity study of carbon nanoforms using a comet assay. Acta Phys. Pol. A. 2018;133:306–308. doi: 10.12693/APhysPolA.133.306. DOI

Niforou K.N., Anagnostopoulos A.K., Vougas K., Kittas C., Gorgoulis V.G., Tsangaris G.T. The proteome profile of the human osteosarcoma U2OS cell line. Cancer Genom. Proteom. 2008;5:63–77. PubMed

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Kołodziej A., Wesełucha-Birczyńska A., Świętek M., Skalniak Ł., Błażewicz M. Raman microspectroscopic investigations of polymer nanocomposites: Evaluation of physical and biophysical properties. Int. J. Polym. Mater. Polym. Biomater. 2019;68:44–52. doi: 10.1080/00914037.2018.1525722. DOI

Waters J.C., Wittmann T. Concepts in Quantitative Fluorescence Microscopy. In: Wilson L., Tran P., editors. Methods in Cell Biology. Elsevier Inc.; Amsterdam, The Netherlands: 2014. PubMed

Kister G., Cassanas G., Bergounhon M., Hoarau D., Vert M. Structural characterization and hydrolytic degradation of solid copolymers of D, L-lactide-co-ε-caprolactone by Raman spectroscopy. Polymer. 2000;41:925–932. doi: 10.1016/S0032-3861(99)00223-2. DOI

Kumar S., Rai A.K., Singh V.B., Rai S.B. Vibrational spectrum of glycine molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005;61:2741–2746. doi: 10.1016/j.saa.2004.09.029. PubMed DOI

Rippon W.B., Koenig J.L., Walton A.G. Raman Spectroscopy of Proline Oligomers and Poly-L-proline. J. Am. Chem. Soc. 1970;92:7455–7459. doi: 10.1021/ja00728a034. PubMed DOI

Gelse K., Pöschl E., Aigner T. Collagens-Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003;55:1531–1546. doi: 10.1016/j.addr.2003.08.002. PubMed DOI

Khoshnoodi J., Pedchenko V., Hudson B.G. Mammalian collagen IV. Microsc. Res. Tech. 2008;71:357–370. doi: 10.1002/jemt.20564. PubMed DOI PMC

Mizuno K., Adachi E., Imamura Y., Katsumata O., Hayashi T. The fibril structure of type V collagen triple-helical domain. Micron. 2001;32:317–323. doi: 10.1016/S0968-4328(00)00036-6. PubMed DOI

Bächinger H.P., Mizuno K., Vranka J.A., Boudko S.P. Comprehensive Natural Products II: Chemistry and Biology. Volume 5. Elsevier Ltd.; Amsterdam, The Netherlands: 2010. Collagen Formation and Structure.

Bogin O., Kvansakul M., Rom E., Singer J., Yayon A., Hohenester E. Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer. Structure. 2002;10:165–173. doi: 10.1016/S0969-2126(02)00697-4. PubMed DOI

Tu Raman Spectroscopy in Biology: Principles and Applications. John Wiley & Sons, Ltd; New York, NY, USA: 1982.

Zhu G., Zhu X., Fan Q., Wan X. Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011;78:1187–1195. doi: 10.1016/j.saa.2010.12.079. PubMed DOI

Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005;409:47–99. doi: 10.1016/j.physrep.2004.10.006. DOI

Wesełucha-Birczyńska A., Babeł K., Jurewicz K. Carbonaceous materials for hydrogen storage investigated by 2D Raman correlation spectroscopy. Vib. Spectrosc. 2012;60:206–211. doi: 10.1016/j.vibspec.2012.01.008. DOI

Rehman I.U., Movasaghi Z., Rehman S. Vibrational Spectroscopy for Tissue Analysis. 1st ed. CRC Press; Boca Raton, FL, USA: 2012. DOI

Tuinstra F., Koenig J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53:1126–1130. doi: 10.1063/1.1674108. DOI

Wesełucha-Birczyńska A., Długoń E., Kołodziej A., Bilska A., Sacharz J., Błażewicz M. Multi-wavelength Raman microspectroscopic studies of modified monwoven carbon scaffolds for tissue engineering applications. J. Mol. Struct. 2020;1220:128665. doi: 10.1016/j.molstruc.2020.128665. DOI

Pautke C., Schieker M., Tischer T., Kolk A., Neth P., Mutschler W., Milz S. Characterization of Osteosarcoma Cell Lines MG-63, Saos-2 and U-2 OS in Comparison to Human Osteoblasts. Anticancer Res. 2004;24:3743–3748. PubMed

Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...