Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.CZ.02.1.01./0.0/0.0/17_049/0008419
EU structural funding in Operational Programme Research, Development and Education
No. LM2018098
Large Research Infrastructure ENREGAT supported by the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34835867
PubMed Central
PMC8619786
DOI
10.3390/nano11113102
PII: nano11113102
Knihovny.cz E-zdroje
- Klíčová slova
- benzalkonium bromide, cetylpyridinium bromide, diclofenac, ibuprofen, organobeidellite, sorption, tetradecyltrimethylammonium bromide,
- Publikační typ
- časopisecké články MeSH
Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55-86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g-1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.
Dekonta Inc Dřetovice 109 273 42 Stehelčeves Czech Republic
Institute of Geonics of the Czech Academy Sciences Studentská 1768 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40. doi: 10.1016/j.susmat.2016.06.002. DOI
Basheer A.A., Ali A. Stereoselective uptake and degradation of o,p-DDD pesticide stereomers in water-sediment system. Chirality. 2018;30:088–1095. PubMed
Ma K., Qin Z., Zhao Z., Zhao C., Liang S. Toxicity evaluation of wastewater at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere. 2016;158:163–170. doi: 10.1016/j.chemosphere.2016.05.052. PubMed DOI
Patel M., Kumar R., Kishor K., Mlsna T., Pittman C.U., Jr., Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects and Removal Methods. Chem. Rev. 2019;119:3510–3670. doi: 10.1021/acs.chemrev.8b00299. PubMed DOI
Basheer A.A. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21th century. Chirality. 2018;30:402–406. doi: 10.1002/chir.22808. PubMed DOI
Duraan A., Montegudo J.M., San Martín I. Operation Costs of the Solar Photo-Catalytic Degradation of Pharmaceuticals in Water: A Mini-Review. Chemosphere. 2018;211:482–488. doi: 10.1016/j.chemosphere.2018.07.170. PubMed DOI
Kyzas G.Z., Fu J., Lazaridis N.K., Bikiaris D.N., Matis K.A. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J. Mol. Liq. 2015;209:87–93.
Dordio A.V., Miranda S., Ramalho J.P.P., Carvalho A.J.P. Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J. Hazard. Mater. 2017;323:575–583. doi: 10.1016/j.jhazmat.2016.05.091. PubMed DOI
Basheer A.A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018;261:583–593. doi: 10.1016/j.molliq.2018.04.021. DOI
Zhu R., Chen Q., Zhou Q., Xi Y., Zhu J., He H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016;123:239–258. doi: 10.1016/j.clay.2015.12.024. DOI
Jiang J.Q., Zeng Z. Comparison of modified montmorillonite adsorbents Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere. 2003;53:53–62. doi: 10.1016/S0045-6535(03)00449-1. PubMed DOI
Ghrab S., Balme S., Cretin M., Bouaziz S., Benzina M. Adsorption of terpenes from Eucalyptus globulus onto modified beidellite. Appl. Clay Sci. 2018;156:169–177. doi: 10.1016/j.clay.2018.02.002. DOI
Yue D., Jing Y., Ma J., Xia C., Yin X., Jia Y. Removal of Neutral Red from aqueous solution by using modified hectorite. Desalination. 2011;267:9–15. doi: 10.1016/j.desal.2010.08.038. DOI
Mermut A., Cano A.F. Studies of the clay minerals society source clays: Chemical analysis of major elements. Clays Clay Miner. 2001;49:381–386. doi: 10.1346/CCMN.2001.0490504. DOI
Tao L., Xiao-Feng T., Yu Z., Tao G. Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: A molecular dynamics simulation. Chin. Phys. B. 2010;19:109101. doi: 10.1088/1674-1056/19/10/109101. DOI
Awad A.M., Shaikh S.M., Jalab R., Gulied M.H., Nasser M.S., Benamor A., Adham S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019;228:115719. doi: 10.1016/j.seppur.2019.115719. DOI
Zhou C.H., Jun L.C., Gates W.P., Zhu T.T., Hua Y.W. Co-intercalation of organic cations/amide molecules into montmorillonite tunable hydrophobicity and swellability. Appl. Clay Sci. 2019;179:105157. doi: 10.1016/j.clay.2019.105157. DOI
Mao S., Gao M. Functional organoclays for removal of heavy metal ions from water: A review. J. Mol. Liq. 2021;334:116143. doi: 10.1016/j.molliq.2021.116143. DOI
Moyo F., Tandlich R., Wilhelmi B.S., Balaz S. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. Int. J. Environ. Res. Public Health. 2014;11:5020–5048. doi: 10.3390/ijerph110505020. PubMed DOI PMC
Kania D., Yunus R., Omar R., Rashid S.A., Jan B.M., Aulia A. Adsorption of non-ionic surfactants on organoclays in drilling fluid investigated by molecular descriptors and Monte Carlo random walk simulations. Appl. Surf. Sci. 2021;538:148154. doi: 10.1016/j.apsusc.2020.148154. DOI
De Oliveira T., Boussafir M., Fougère L., Destandau E., Sugahara Y., Guégan R. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. Chemosphere. 2020;259:127480. doi: 10.1016/j.chemosphere.2020.127480. PubMed DOI
França D., Trigueiro P., Filho E.S., Fonseca M., Jaber M. Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere. 2020;242:125109. doi: 10.1016/j.chemosphere.2019.125109. PubMed DOI
Thiebault T., Boussafir M. Adsorption mechanism of psychoactive drugs onto montmorillonite. J. Colloid Interface Sci. 2019;30:100183. doi: 10.1016/j.colcom.2019.100183. DOI
Jankovič L., Škorňa P., Rodriguez D.M., Scholtzová E., Tunega D. Preparation, characterization and adsorption properties of tetraalkylphosphonium organobeidelites. Appl. Clay Sci. 2021;204:105989. doi: 10.1016/j.clay.2021.105989. DOI
Davila-Estrada M., Ramirez-Garcia J.J., Solache-Rios M.J., Gallegos-Perez J.L. Kinetic and Equilibrium Sorption Studies of Ceftriaxone and Paracetamol by Surfactant-Modified Zeolite. Water Air Soil Pollut. 2018;229:123. doi: 10.1007/s11270-018-3783-4. DOI
Liu Y., Dong C., Wei H., Yuan W., Li K. Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): Kinetics, equilibrium and mechanism. Appl. Clay Sci. 2015;118:301–307.
Guegan R., Le Forestier L. Performance evaluation of organoclays for the amoxicillin retention in a dynamic context. Chem. Eng. J. 2021;406:12859. doi: 10.1016/j.cej.2020.126859. DOI
Chauhan M., Saini V.K., Suthar S. Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium and paracetamol from water. J. Hazard. Mater. 2020;399:122832. doi: 10.1016/j.jhazmat.2020.122832. PubMed DOI
Maia G.S., de Andrade J., da Silva M.G., Vieira M.G. Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study. Powder Technol. 2019;345:140–150. doi: 10.1016/j.powtec.2018.12.097. DOI
Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015;532:112–126. doi: 10.1016/j.scitotenv.2015.05.130. PubMed DOI
Batista L.F.A., de Mira P.S., De Presbiteris R.J., Grassi M.T., Salata R.C., Melo V.F., Abate G. Vermiculite modified with alkylammonium salts: Characterization and sorption of ibuprofen and paracetamol. Chem. Pap. 2021;75:4199–4216. doi: 10.1007/s11696-021-01643-6. DOI
Martín J., Orta M.D.M., Medina-Carrasco S., Santos J.L., Aparicio I., Alonso E. Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Appl. Clay Sci. 2019;171:29–37. doi: 10.1016/j.clay.2019.02.002. DOI
Aggarwal V., Li H., Teppen B.J. Triazine adsorption by saponite and beidellite clay minerals. Environ. Toxicol. Chem. 2006;25:392–399. doi: 10.1897/05-264R.1. PubMed DOI
PubChem—U.S. National Library of Medicine. [(accessed on 13 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov.
Chauhan M., Saini V.K., Suthar S. Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J. Clean Prod. 2020;258:120686. doi: 10.1016/j.jclepro.2020.120686. DOI
Krajisnik D., Dakovic M., Milojevic M., Malenovic A., Kragovic M., Bogdanovic D.B., Dondur V., Milic J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloid Surf. B. 2011;83:165–172. doi: 10.1016/j.colsurfb.2010.11.024. PubMed DOI
De Paiva L.B., Morales A.R., Diaz F.R. Organoclays: Properties, preparation, applications. Appl. Clay Sci. 2008;42:8–24. doi: 10.1016/j.clay.2008.02.006. DOI
Navratilova Z., Wojtowicz P., Vaculikova L., Sugarkova V. Sorption of alkylammonium cations on montmorillonite. Acta Geodyn. Geomater. 2007;4:59–65.
Lagaly G. Interaction of alkylamines with different types of layered compounds. Solid State Ion. 1986;22:43–51. doi: 10.1016/0167-2738(86)90057-3. DOI
Grundgeiger E., Lim Y.H., Frost R.L., Ayoko G., Xi Y. Application of organo-beidellites for the adsorption of atrazine. Appl. Clay Sci. 2015;105–106:252–258. doi: 10.1016/j.clay.2015.01.003. DOI
Türker S., Yarza F., Sánchez R.M., Yapar S. Surface and interface properties of benzethoniumchloride-montmorillonite. Colloids Surf. A Physicochem. Eng. Asp. 2017;520:817–825. doi: 10.1016/j.colsurfa.2017.02.019. DOI
Praus P., Turicová M., Študentová S., Ritz M. Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J. Colloid Interface Sci. 2006;304:29–36. doi: 10.1016/j.jcis.2006.08.038. PubMed DOI
Emmerich K., Wolters F., Kahr G., Lagaly G. Clay Profiling: The Classification of Montmorillonites. Clays Clay Miner. 2009;57:104–114. doi: 10.1346/CCMN.2009.0570110. DOI
Kloprogge J.T. Spectroscopic studies of synthetic and natural beidellites: A review. Appl. Clay Sci. 2006;31:165–179. doi: 10.1016/j.clay.2005.10.003. DOI
Scholtzova E., Jankovic L., Tunega D. Stability of tetrabutylphosphonium beidellite organoclay. J. Phys. Chem. C. 2018;122:8380–8389. doi: 10.1021/acs.jpcc.8b01042. DOI
Sternik D., Gladys-Plaska A., Grabia E., Majdan M., Knauer W. A thermal, sorptive and spectral study of HDTMA-bentonite. J. Therm. Anal. Calorim. 2017;129:1277–1289. doi: 10.1007/s10973-017-6384-3. DOI
Moslemizadeh A., Aghdam S.K.-Y., Shahbazi K., Aghdam H.K.-Y., Alboghobeish F. Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Appl. Clay Sci. 2016;127–128:111–122. doi: 10.1016/j.clay.2016.04.014. DOI
Park Y., Ayoko G.A., Kristof J., Horvath E., Frost R.L. A thermoanalytical assessment of an organoclay. J. Therm. Anal. Calorim. 2012;107:1137–1142. doi: 10.1007/s10973-011-1568-8. DOI
Delbem M.F., Valera T.S., Valenzuela-Diaz F.R., Demarquette N.R. Modification of a brazilian smectite clay with different quaternary ammonium salts. Química Nova. 2010;33:309–315. doi: 10.1590/S0100-40422010000200015. DOI
Zhou Q., Frost R.L., He H., Xi Y. Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay-The XRD and TG study. J. Colloid Interface Sci. 2007;307:50–55. doi: 10.1016/j.jcis.2006.11.016. PubMed DOI
Landry K.A., Sun P., Huang C.H., Boyer T.H. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Res. 2015;68:510–521. doi: 10.1016/j.watres.2014.09.056. PubMed DOI
Thiebault T., Guégan R., Boussafir M., Boyer T.H. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J. Colloid Interface Sci. 2015;453:1–8. doi: 10.1016/j.jcis.2015.04.029. PubMed DOI
Ahmaruzzaman M.D. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interface Sci. 2008;143:48–67. doi: 10.1016/j.cis.2008.07.002. PubMed DOI
Karthik R.M., Philip L. Sorption of pharmaceutical compounds and nutrients by various porous low cost adsorbents. J. Environ. Chem. Eng. 2021;9:104916. doi: 10.1016/j.jece.2020.104916. DOI
Sekret R., Koldej J. Thermal regeneration of mineral sorbent using burner unit. Chem. Process. Eng. 2013;34:191–201. doi: 10.2478/cpe-2013-0016. DOI