Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions

. 2021 Nov 17 ; 11 (11) : . [epub] 20211117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835867

Grantová podpora
No.CZ.02.1.01./0.0/0.0/17_049/0008419 EU structural funding in Operational Programme Research, Development and Education
No. LM2018098 Large Research Infrastructure ENREGAT supported by the Ministry of Education, Youth and Sports of the Czech Republic

Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55-86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g-1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.

Zobrazit více v PubMed

De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40. doi: 10.1016/j.susmat.2016.06.002. DOI

Basheer A.A., Ali A. Stereoselective uptake and degradation of o,p-DDD pesticide stereomers in water-sediment system. Chirality. 2018;30:088–1095. PubMed

Ma K., Qin Z., Zhao Z., Zhao C., Liang S. Toxicity evaluation of wastewater at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere. 2016;158:163–170. doi: 10.1016/j.chemosphere.2016.05.052. PubMed DOI

Patel M., Kumar R., Kishor K., Mlsna T., Pittman C.U., Jr., Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects and Removal Methods. Chem. Rev. 2019;119:3510–3670. doi: 10.1021/acs.chemrev.8b00299. PubMed DOI

Basheer A.A. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21th century. Chirality. 2018;30:402–406. doi: 10.1002/chir.22808. PubMed DOI

Duraan A., Montegudo J.M., San Martín I. Operation Costs of the Solar Photo-Catalytic Degradation of Pharmaceuticals in Water: A Mini-Review. Chemosphere. 2018;211:482–488. doi: 10.1016/j.chemosphere.2018.07.170. PubMed DOI

Kyzas G.Z., Fu J., Lazaridis N.K., Bikiaris D.N., Matis K.A. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J. Mol. Liq. 2015;209:87–93.

Dordio A.V., Miranda S., Ramalho J.P.P., Carvalho A.J.P. Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J. Hazard. Mater. 2017;323:575–583. doi: 10.1016/j.jhazmat.2016.05.091. PubMed DOI

Basheer A.A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018;261:583–593. doi: 10.1016/j.molliq.2018.04.021. DOI

Zhu R., Chen Q., Zhou Q., Xi Y., Zhu J., He H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016;123:239–258. doi: 10.1016/j.clay.2015.12.024. DOI

Jiang J.Q., Zeng Z. Comparison of modified montmorillonite adsorbents Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere. 2003;53:53–62. doi: 10.1016/S0045-6535(03)00449-1. PubMed DOI

Ghrab S., Balme S., Cretin M., Bouaziz S., Benzina M. Adsorption of terpenes from Eucalyptus globulus onto modified beidellite. Appl. Clay Sci. 2018;156:169–177. doi: 10.1016/j.clay.2018.02.002. DOI

Yue D., Jing Y., Ma J., Xia C., Yin X., Jia Y. Removal of Neutral Red from aqueous solution by using modified hectorite. Desalination. 2011;267:9–15. doi: 10.1016/j.desal.2010.08.038. DOI

Mermut A., Cano A.F. Studies of the clay minerals society source clays: Chemical analysis of major elements. Clays Clay Miner. 2001;49:381–386. doi: 10.1346/CCMN.2001.0490504. DOI

Tao L., Xiao-Feng T., Yu Z., Tao G. Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: A molecular dynamics simulation. Chin. Phys. B. 2010;19:109101. doi: 10.1088/1674-1056/19/10/109101. DOI

Awad A.M., Shaikh S.M., Jalab R., Gulied M.H., Nasser M.S., Benamor A., Adham S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019;228:115719. doi: 10.1016/j.seppur.2019.115719. DOI

Zhou C.H., Jun L.C., Gates W.P., Zhu T.T., Hua Y.W. Co-intercalation of organic cations/amide molecules into montmorillonite tunable hydrophobicity and swellability. Appl. Clay Sci. 2019;179:105157. doi: 10.1016/j.clay.2019.105157. DOI

Mao S., Gao M. Functional organoclays for removal of heavy metal ions from water: A review. J. Mol. Liq. 2021;334:116143. doi: 10.1016/j.molliq.2021.116143. DOI

Moyo F., Tandlich R., Wilhelmi B.S., Balaz S. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. Int. J. Environ. Res. Public Health. 2014;11:5020–5048. doi: 10.3390/ijerph110505020. PubMed DOI PMC

Kania D., Yunus R., Omar R., Rashid S.A., Jan B.M., Aulia A. Adsorption of non-ionic surfactants on organoclays in drilling fluid investigated by molecular descriptors and Monte Carlo random walk simulations. Appl. Surf. Sci. 2021;538:148154. doi: 10.1016/j.apsusc.2020.148154. DOI

De Oliveira T., Boussafir M., Fougère L., Destandau E., Sugahara Y., Guégan R. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. Chemosphere. 2020;259:127480. doi: 10.1016/j.chemosphere.2020.127480. PubMed DOI

França D., Trigueiro P., Filho E.S., Fonseca M., Jaber M. Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere. 2020;242:125109. doi: 10.1016/j.chemosphere.2019.125109. PubMed DOI

Thiebault T., Boussafir M. Adsorption mechanism of psychoactive drugs onto montmorillonite. J. Colloid Interface Sci. 2019;30:100183. doi: 10.1016/j.colcom.2019.100183. DOI

Jankovič L., Škorňa P., Rodriguez D.M., Scholtzová E., Tunega D. Preparation, characterization and adsorption properties of tetraalkylphosphonium organobeidelites. Appl. Clay Sci. 2021;204:105989. doi: 10.1016/j.clay.2021.105989. DOI

Davila-Estrada M., Ramirez-Garcia J.J., Solache-Rios M.J., Gallegos-Perez J.L. Kinetic and Equilibrium Sorption Studies of Ceftriaxone and Paracetamol by Surfactant-Modified Zeolite. Water Air Soil Pollut. 2018;229:123. doi: 10.1007/s11270-018-3783-4. DOI

Liu Y., Dong C., Wei H., Yuan W., Li K. Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): Kinetics, equilibrium and mechanism. Appl. Clay Sci. 2015;118:301–307.

Guegan R., Le Forestier L. Performance evaluation of organoclays for the amoxicillin retention in a dynamic context. Chem. Eng. J. 2021;406:12859. doi: 10.1016/j.cej.2020.126859. DOI

Chauhan M., Saini V.K., Suthar S. Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium and paracetamol from water. J. Hazard. Mater. 2020;399:122832. doi: 10.1016/j.jhazmat.2020.122832. PubMed DOI

Maia G.S., de Andrade J., da Silva M.G., Vieira M.G. Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study. Powder Technol. 2019;345:140–150. doi: 10.1016/j.powtec.2018.12.097. DOI

Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015;532:112–126. doi: 10.1016/j.scitotenv.2015.05.130. PubMed DOI

Batista L.F.A., de Mira P.S., De Presbiteris R.J., Grassi M.T., Salata R.C., Melo V.F., Abate G. Vermiculite modified with alkylammonium salts: Characterization and sorption of ibuprofen and paracetamol. Chem. Pap. 2021;75:4199–4216. doi: 10.1007/s11696-021-01643-6. DOI

Martín J., Orta M.D.M., Medina-Carrasco S., Santos J.L., Aparicio I., Alonso E. Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Appl. Clay Sci. 2019;171:29–37. doi: 10.1016/j.clay.2019.02.002. DOI

Aggarwal V., Li H., Teppen B.J. Triazine adsorption by saponite and beidellite clay minerals. Environ. Toxicol. Chem. 2006;25:392–399. doi: 10.1897/05-264R.1. PubMed DOI

PubChem—U.S. National Library of Medicine. [(accessed on 13 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov.

Chauhan M., Saini V.K., Suthar S. Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J. Clean Prod. 2020;258:120686. doi: 10.1016/j.jclepro.2020.120686. DOI

Krajisnik D., Dakovic M., Milojevic M., Malenovic A., Kragovic M., Bogdanovic D.B., Dondur V., Milic J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloid Surf. B. 2011;83:165–172. doi: 10.1016/j.colsurfb.2010.11.024. PubMed DOI

De Paiva L.B., Morales A.R., Diaz F.R. Organoclays: Properties, preparation, applications. Appl. Clay Sci. 2008;42:8–24. doi: 10.1016/j.clay.2008.02.006. DOI

Navratilova Z., Wojtowicz P., Vaculikova L., Sugarkova V. Sorption of alkylammonium cations on montmorillonite. Acta Geodyn. Geomater. 2007;4:59–65.

Lagaly G. Interaction of alkylamines with different types of layered compounds. Solid State Ion. 1986;22:43–51. doi: 10.1016/0167-2738(86)90057-3. DOI

Grundgeiger E., Lim Y.H., Frost R.L., Ayoko G., Xi Y. Application of organo-beidellites for the adsorption of atrazine. Appl. Clay Sci. 2015;105–106:252–258. doi: 10.1016/j.clay.2015.01.003. DOI

Türker S., Yarza F., Sánchez R.M., Yapar S. Surface and interface properties of benzethoniumchloride-montmorillonite. Colloids Surf. A Physicochem. Eng. Asp. 2017;520:817–825. doi: 10.1016/j.colsurfa.2017.02.019. DOI

Praus P., Turicová M., Študentová S., Ritz M. Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J. Colloid Interface Sci. 2006;304:29–36. doi: 10.1016/j.jcis.2006.08.038. PubMed DOI

Emmerich K., Wolters F., Kahr G., Lagaly G. Clay Profiling: The Classification of Montmorillonites. Clays Clay Miner. 2009;57:104–114. doi: 10.1346/CCMN.2009.0570110. DOI

Kloprogge J.T. Spectroscopic studies of synthetic and natural beidellites: A review. Appl. Clay Sci. 2006;31:165–179. doi: 10.1016/j.clay.2005.10.003. DOI

Scholtzova E., Jankovic L., Tunega D. Stability of tetrabutylphosphonium beidellite organoclay. J. Phys. Chem. C. 2018;122:8380–8389. doi: 10.1021/acs.jpcc.8b01042. DOI

Sternik D., Gladys-Plaska A., Grabia E., Majdan M., Knauer W. A thermal, sorptive and spectral study of HDTMA-bentonite. J. Therm. Anal. Calorim. 2017;129:1277–1289. doi: 10.1007/s10973-017-6384-3. DOI

Moslemizadeh A., Aghdam S.K.-Y., Shahbazi K., Aghdam H.K.-Y., Alboghobeish F. Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Appl. Clay Sci. 2016;127–128:111–122. doi: 10.1016/j.clay.2016.04.014. DOI

Park Y., Ayoko G.A., Kristof J., Horvath E., Frost R.L. A thermoanalytical assessment of an organoclay. J. Therm. Anal. Calorim. 2012;107:1137–1142. doi: 10.1007/s10973-011-1568-8. DOI

Delbem M.F., Valera T.S., Valenzuela-Diaz F.R., Demarquette N.R. Modification of a brazilian smectite clay with different quaternary ammonium salts. Química Nova. 2010;33:309–315. doi: 10.1590/S0100-40422010000200015. DOI

Zhou Q., Frost R.L., He H., Xi Y. Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay-The XRD and TG study. J. Colloid Interface Sci. 2007;307:50–55. doi: 10.1016/j.jcis.2006.11.016. PubMed DOI

Landry K.A., Sun P., Huang C.H., Boyer T.H. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Res. 2015;68:510–521. doi: 10.1016/j.watres.2014.09.056. PubMed DOI

Thiebault T., Guégan R., Boussafir M., Boyer T.H. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J. Colloid Interface Sci. 2015;453:1–8. doi: 10.1016/j.jcis.2015.04.029. PubMed DOI

Ahmaruzzaman M.D. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interface Sci. 2008;143:48–67. doi: 10.1016/j.cis.2008.07.002. PubMed DOI

Karthik R.M., Philip L. Sorption of pharmaceutical compounds and nutrients by various porous low cost adsorbents. J. Environ. Chem. Eng. 2021;9:104916. doi: 10.1016/j.jece.2020.104916. DOI

Sekret R., Koldej J. Thermal regeneration of mineral sorbent using burner unit. Chem. Process. Eng. 2013;34:191–201. doi: 10.2478/cpe-2013-0016. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...