Chemokine CCL2 prevents opioid-induced inhibition of nociceptive synaptic transmission in spinal cord dorsal horn
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 20-19136S
Grantová Agentura České Republiky
RVO67985823
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34857006
PubMed Central
PMC8638248
DOI
10.1186/s12974-021-02335-4
PII: 10.1186/s12974-021-02335-4
Knihovny.cz E-zdroje
- Klíčová slova
- CCL2, Hyperalgesia, MOR, Microglia, Spinal cord, Synaptic transmission, TRPV1,
- MeSH
- anilidy farmakologie MeSH
- chemokin CCL2 farmakologie MeSH
- cinnamáty farmakologie MeSH
- enkefalin, Ala(2)-MePhe(4)-Gly(5)- farmakologie MeSH
- excitační postsynaptické potenciály účinky léků MeSH
- krysa rodu Rattus MeSH
- mícha účinky léků MeSH
- miniaturní postsynaptické potenciály účinky léků MeSH
- nervový přenos účinky léků MeSH
- neurony účinky léků MeSH
- nocicepce účinky léků MeSH
- opioidní analgetika farmakologie MeSH
- potkani Wistar MeSH
- zadní rohy míšní účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anilidy MeSH
- chemokin CCL2 MeSH
- cinnamáty MeSH
- enkefalin, Ala(2)-MePhe(4)-Gly(5)- MeSH
- N-(3-methoxyphenyl)-4-chlorocinnamanilide MeSH Prohlížeč
- opioidní analgetika MeSH
BACKGROUND: Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C-C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. METHODS: Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. RESULTS: Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. CONCLUSIONS: Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.
Zobrazit více v PubMed
Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and exogenous opioids in pain. Annu Rev Neurosci. 2018;41:453–473. doi: 10.1146/annurev-neuro-080317-061522. PubMed DOI PMC
Zhao C, Guo R, Hu F, Meng J, Mo L, Chen P, Liao X, Cui Y, Feng J. Spinal MCP-1 contributes to the development of morphine antinociceptive tolerance in rats. Am J Med Sci. 2012;344:473–479. doi: 10.1097/MAJ.0b013e31826a82ce. PubMed DOI
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience. 2016;338:160–182. doi: 10.1016/j.neuroscience.2016.06.029. PubMed DOI
Kwiatkowski K, Popiolek-Barczyk K, Piotrowska A, Rojewska E, Ciapała K, Makuch W, Mika J. Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine. 2019;119:202–213. doi: 10.1016/j.cyto.2019.03.007. PubMed DOI
Fu ES, Zhang YP, Sagen J, Candiotti KA, Morton PD, Liebl DJ, Bethea JR, Brambilla R. Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain. 2010;148:509–518. doi: 10.1016/j.pain.2010.01.001. PubMed DOI PMC
Hutchinson MR, Coats BD, Lewis SS, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun. 2008;22:1178–1189. doi: 10.1016/j.bbi.2008.05.004. PubMed DOI PMC
Rogers TJ. Bidirectional Regulation of Opioid and Chemokine Function. Front Immunol. 2020;11:94. doi: 10.3389/fimmu.2020.00094. PubMed DOI PMC
Zhang N, Rogers TJ, Caterina M, Oppenheim JJ. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J Immunol. 2004;173:594–599. doi: 10.4049/jimmunol.173.1.594. PubMed DOI
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716:106–119. doi: 10.1016/j.ejphar.2013.01.072. PubMed DOI
Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LDF, Thompson SWN, Marchand F, McMahon SB. CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain. 2009;13:263–272. doi: 10.1016/j.ejpain.2008.04.017. PubMed DOI
Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A. 2003;100:7947–7952. doi: 10.1073/pnas.1331358100. PubMed DOI PMC
Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE. 2010 doi: 10.1371/journal.pone.0013693. PubMed DOI PMC
Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol. 2014;5:280. doi: 10.3389/fphar.2014.00280. PubMed DOI PMC
Rowan MP, Bierbower SM, Eskander MA, Szteyn K, Por ED, Gomez R, Veldhuis N, Bunnett NW, Jeske NA. Activation of mu opioid receptors sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) via β-arrestin-2-mediated cross-talk. PLoS ONE. 2014 doi: 10.1371/journal.pone.0093688. PubMed DOI PMC
Scherer PC, Zaccor NW, Neumann NM, Vasavda C, Barrow R, Ewald AJ, Rao F, Sumner CJ, Snyder SH. TRPV1 is a physiological regulator of μ-opioid receptors. Proc Natl Acad Sci U S A. 2017;114:13561–13566. doi: 10.1073/pnas.1717005114. PubMed DOI PMC
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015;9:235–243. doi: 10.1080/19336950.2015.1069450. PubMed DOI PMC
Spahn V, Fischer O, Endres-Becker J, Schäfer M, Stein C, Zöllner C. Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner. Pain. 2013;154:598–608. doi: 10.1016/j.pain.2012.12.026. PubMed DOI
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013 doi: 10.1038/cddis.2013.54. PubMed DOI PMC
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology. 2019;146:163–174. doi: 10.1016/j.neuropharm.2018.11.027. PubMed DOI
Gunthorpe MJ, Rami HK, Jerman JC, et al. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology. 2004;46:133–149. doi: 10.1016/S0028-3908(03)00305-8. PubMed DOI
Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology. 2014;81:75–84. doi: 10.1016/j.neuropharm.2014.01.041. PubMed DOI
Spicarova D, Palecek J. The role of the TRPV1 endogenous agonist N-oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol. 2009;102:234–243. doi: 10.1152/jn.00024.2009. PubMed DOI
Zhou HY, Chen SR, Chen H, Pan HL. Opioid-induced long-term potentiation in the spinal cord is a presynaptic event. J Neurosci. 2010;30:4460–4466. doi: 10.1523/JNEUROSCI.5857-09.2010. PubMed DOI PMC
Silva Bastos LF, Pinheiro De Oliveira AC, Magnus Schlachetzki JC, Fiebich BL. Minocycline reduces prostaglandin e synthase expression and 8-isoprostane formation in LPS-activated primary rat microglia. Immunopharmacol Immunotoxicol. 2011;33:576–580. doi: 10.3109/08923973.2010.544659. PubMed DOI
Uchytilova E, Spicarova D, Palecek J. Hypersensitivity induced by intrathecal bradykinin administration is enhanced by N-oleoyldopamine (OLDA) and prevented by TRPV1 antagonist. Int J Mol Sci. 2021 doi: 10.3390/ijms22073712. PubMed DOI PMC
Heinke B, Gingl E, Sandkühler J. Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J Neurosci. 2011;31:1313–1322. doi: 10.1523/JNEUROSCI.4060-10.2011. PubMed DOI PMC
Ding YQ, Kaneko T, Nomura S, Mizuno N. Immunohistochemical localization of μ-opioid receptors in the central nervous system of the rat. J Comp Neurol. 1996;367:375–402. doi: 10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2. PubMed DOI
Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM. Pre- and postsynaptic distribution of μ, δ and κ opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res. 1990;521:15–22. doi: 10.1016/0006-8993(90)91519-M. PubMed DOI
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci. 2014 doi: 10.3389/fncel.2014.00186. PubMed DOI PMC
Wu SY, Ohtubo Y, Brailoiu GC, Dun NJ. Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. Br J Pharmacol. 2003;140:1088–1096. doi: 10.1038/sj.bjp.0705534. PubMed DOI PMC
Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI. Contribution of GIRK2-mediated postsynaptic signaling to opiate and α2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci U S A. 2003;100:271–276. doi: 10.1073/pnas.0136822100. PubMed DOI PMC
Drdla R, Gassner M, Gingl E, Sandkühler J. Induction of synaptic long-term potentiation after opioid withdrawal. Science. 2009;325:207–210. doi: 10.1126/science.1171759. PubMed DOI
Dansereau MA, Midavaine É, Bégin-Lavallée V, Belkouch M, Beaudet N, Longpré JM, Mélik-Parsadaniantz S, Sarret P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J Neuroinflammation. 2021;18:1–18. doi: 10.1186/s12974-021-02125-y. PubMed DOI PMC
Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, Mauborgne A, Dansereau M-A, Kitabgi P, Sarret P, Pohl M, Melik Parsadaniantz S. CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci. 2011;31:5865–5875. doi: 10.1523/JNEUROSCI.5986-10.2011. PubMed DOI PMC
Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL, Ma Q, Ji RR. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci. 2009;29:4096–4108. doi: 10.1523/JNEUROSCI.3623-08.2009. PubMed DOI PMC
Jeon SM, Lee KM, Cho HJ. Expression of monocyte chemoattractant protein-1 in rat dorsal root ganglia and spinal cord in experimental models of neuropathic pain. Brain Res. 2009;1251:103–111. doi: 10.1016/j.brainres.2008.11.046. PubMed DOI
Kwiatkowski K, Piotrowska A, Rojewska E, Makuch W, Mika J. The RS504393 influences the level of nociceptive factors and enhances opioid analgesic potency in neuropathic rats. J Neuroimmune Pharmacol. 2017;12:402–419. doi: 10.1007/s11481-017-9729-6. PubMed DOI PMC
Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostene W, Kitabgi P, Melik-Parsadaniantz S. Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem. 2005;95:1023–1034. doi: 10.1111/j.1471-4159.2005.03431.x. PubMed DOI
Kawaguchi-Niida M, Yamamoto T, Kato Y, Inose Y, Shibata N. MCP-1/CCR2 signaling-mediated astrocytosis is accelerated in a transgenic mouse model of SOD1-mutated familial ALS. Acta Neuropathol Commun. 2014;2:21. doi: 10.1186/2051-5960-2-21. PubMed DOI PMC
Komiya H, Takeuchi H, Ogawa Y, et al. CCR2 is localized in microglia and neurons, as well as infiltrating monocytes, in the lumbar spinal cord of ALS mice. Mol Brain. 2020 doi: 10.1186/s13041-020-00607-3. PubMed DOI PMC
Huang CY, Chen YL, Li AH, Lu JC, Wang HL. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons. J Neuroinflammation. 2014;11:1–10. doi: 10.1186/1742-2094-11-1. PubMed DOI PMC
Baamonde A, Hidalgo A, Menéndez L. Involvement of glutamate NMDA and AMPA receptors, glial cells and IL-1β in the spinal hyperalgesia evoked by the chemokine CCL2 in mice. Neurosci Lett. 2011;502:178–181. doi: 10.1016/j.neulet.2011.07.038. PubMed DOI