Hypersensitivity Induced by Intrathecal Bradykinin Administration Is Enhanced by N-oleoyldopamine (OLDA) and Prevented by TRPV1 Antagonist
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19136S
Grantová Agentura České Republiky
RVO67985823
Institute of Physiology CAS
PubMed
33918267
PubMed Central
PMC8038144
DOI
10.3390/ijms22073712
PII: ijms22073712
Knihovny.cz E-zdroje
- Klíčová slova
- OLDA, TRPV1, allodynia, bradykinin, hyperalgesia, spinal cord,
- MeSH
- bradykinin MeSH
- dopamin analogy a deriváty MeSH
- hyperalgezie metabolismus MeSH
- kationtové kanály TRPV agonisté metabolismus MeSH
- krysa rodu Rattus MeSH
- mícha metabolismus MeSH
- potkani Wistar MeSH
- spinální injekce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bradykinin MeSH
- dopamin MeSH
- kationtové kanály TRPV MeSH
- N-oleoyldopamine MeSH Prohlížeč
- TRPV1 protein, mouse MeSH Prohlížeč
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.
Zobrazit více v PubMed
Mou J., Paillard F., Turnbull B., Trudeau J., Stoker M., Katz N.P. Efficacy of Qutenza(R) (capsaicin) 8% patch for neuropathic pain: A meta-analysis of the Qutenza Clinical Trials Database. Pain. 2013;154:1632–1639. doi: 10.1016/j.pain.2013.04.044. PubMed DOI
Schumacher M., Pasvankas G. Topical capsaicin formulations in the management of neuropathic pain. Prog. Drug Res. 2014;68:105–128. PubMed
Smith H., Brooks J.R. Capsaicin-based therapies for pain control. Prog. Drug Res. 2014;68:129–146. PubMed
Pospisilova E., Palecek J. Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application. Pain. 2006;125:233–243. doi: 10.1016/j.pain.2006.05.021. PubMed DOI
Uchytilova E., Spicarova D., Palecek J. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms. Mol. Pain. 2014;10:67. doi: 10.1186/1744-8069-10-67. PubMed DOI PMC
Moran M.M., Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: Current state of the field. Br. J. Pharmacol. 2018;175:2185–2203. doi: 10.1111/bph.14044. PubMed DOI PMC
Treede R.D., Wagner T., Kern K.U., Husstedt I.W., Arendt G., Birklein F., Cegla T., Freynhagen R., Gockel H.H., Heskamp M.L., et al. Mechanism- and experience-based strategies to optimize treatment response to the capsaicin 8% cutaneous patch in patients with localized neuropathic pain. Curr. Med. Res. Opin. 2013;29:527–538. doi: 10.1185/03007995.2013.781019. PubMed DOI
Anand P., Bley K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011;107:490–502. doi: 10.1093/bja/aer260. PubMed DOI PMC
Iadarola M.J., Mannes A.J. The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr. Top. Med. Chem. 2011;11:2171–2179. doi: 10.2174/156802611796904942. PubMed DOI PMC
Spicarova D., Nerandzic V., Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol. Res. 2014;63(Suppl. S1):S225–S236. doi: 10.33549/physiolres.932713. PubMed DOI
Spicarova D., Nerandzic V., Palecek J. Modulation of spinal cord synaptic activity by tumor necrosis factor alpha in a model of peripheral neuropathy. J. Neuroinflamm. 2011;8:177. doi: 10.1186/1742-2094-8-177. PubMed DOI PMC
Spicarova D., Adamek P., Kalynovska N., Mrozkova P., Palecek J. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology. 2014;81:75–84. doi: 10.1016/j.neuropharm.2014.01.041. PubMed DOI
Nerandzic V., Mrozkova P., Adamek P., Spicarova D., Nagy I., Palecek J. Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by N-arachidonoylphosphatidylethanolamine. Br. J. Pharmacol. 2018;175:2322–2336. doi: 10.1111/bph.13849. PubMed DOI PMC
Li Y., Adamek P., Zhang H., Tatsui C.E., Rhines L.D., Mrozkova P., Li Q., Kosturakis A.K., Cassidy R.M., Harrison D.S., et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J. Neurosci. Off. J. Soc. Neurosci. 2015;35:13487–13500. doi: 10.1523/JNEUROSCI.1956-15.2015. PubMed DOI PMC
Adamek P., Heles M., Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology. 2019;146:163–174. doi: 10.1016/j.neuropharm.2018.11.027. PubMed DOI
Mrozkova P., Spicarova D., Palecek J. Spinal PAR2 Activation Contributes to Hypersensitivity Induced by Peripheral Inflammation in Rats. Int. J. Mol. Sci. 2021;22:991. doi: 10.3390/ijms22030991. PubMed DOI PMC
Szolcsanyi J., Pinter E. Transient receptor potential vanilloid 1 as a therapeutic target in analgesia. Expert Opin. Ther. Targets. 2013;17:641–657. doi: 10.1517/14728222.2013.772580. PubMed DOI
Mrozkova P., Spicarova D., Palecek J. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors. PLoS ONE. 2016;11:e0163991. doi: 10.1371/journal.pone.0163991. PubMed DOI PMC
Spicarova D., Palecek J. Tumor necrosis factor alpha sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine. J. Neuroinflamm. 2010;7:49. doi: 10.1186/1742-2094-7-49. PubMed DOI PMC
Spicarova D., Palecek J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J. Neurophysiol. 2009;102:234–243. doi: 10.1152/jn.00024.2009. PubMed DOI
Couture R., Harrisson M., Vianna R.M., Cloutier F. Kinin receptors in pain and inflammation. Eur. J. Pharmacol. 2001;429:161–176. doi: 10.1016/S0014-2999(01)01318-8. PubMed DOI
Lopes P., Kar S., Chretien L., Regoli D., Quirion R., Couture R. Quantitative autoradiographic localization of [125I-Tyr8]bradykinin receptor binding sites in the rat spinal cord: Effects of neonatal capsaicin, noradrenergic deafferentation, dorsal rhizotomy and peripheral axotomy. Neuroscience. 1995;68:867–881. doi: 10.1016/0306-4522(95)00161-B. PubMed DOI
Wang H., Kohno T., Amaya F., Brenner G.J., Ito N., Allchorne A., Ji R.R., Woolf C.J. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J. Neurosci. Off. J. Soc. Neurosci. 2005;25:7986–7992. doi: 10.1523/JNEUROSCI.2393-05.2005. PubMed DOI PMC
Fox A., Wotherspoon G., McNair K., Hudson L., Patel S., Gentry C., Winter J. Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain. 2003;104:683–691. doi: 10.1016/S0304-3959(03)00141-6. PubMed DOI
Kohno T., Wang H., Amaya F., Brenner G.J., Cheng J.K., Ji R.R., Woolf C.J. Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J. Neurosci. Off. J. Soc. Neurosci. 2008;28:4533–4540. doi: 10.1523/JNEUROSCI.5349-07.2008. PubMed DOI PMC
Chuang H.H., Prescott E.D., Kong H., Shields S., Jordt S.E., Basbaum A.I., Chao M.V., Julius D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature. 2001;411:957–962. doi: 10.1038/35082088. PubMed DOI
Cao E., Cordero-Morales J.F., Liu B., Qin F., Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron. 2013;77:667–679. doi: 10.1016/j.neuron.2012.12.016. PubMed DOI PMC
Lukacs V., Yudin Y., Hammond G.R., Sharma E., Fukami K., Rohacs T. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:11451–11463. doi: 10.1523/JNEUROSCI.5637-12.2013. PubMed DOI PMC
Talbot S., Dias J.P., Lahjouji K., Bogo M.R., Campos M.M., Gaudreau P., Couture R. Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. J. Neuroinflamm. 2012;9:16. doi: 10.1186/1742-2094-9-16. PubMed DOI PMC
Cernit V., Senecal J., Othman R., Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int. J. Mol. Sci. 2020;21:821. doi: 10.3390/ijms21030821. PubMed DOI PMC
Chu C.J., Huang S.M., De Petrocellis L., Bisogno T., Ewing S.A., Miller J.D., Zipkin R.E., Daddario N., Appendino G., Di Marzo V., et al. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 2003;278:13633–13639. doi: 10.1074/jbc.M211231200. PubMed DOI
Laneuville O., Reader T.A., Couture R. Intrathecal bradykinin acts presynaptically on spinal noradrenergic terminals to produce antinociception in the rat. Eur. J. Pharmacol. 1989;159:273–283. doi: 10.1016/0014-2999(89)90158-1. PubMed DOI
Kariya K., Yamauchi A., Hattori S., Tsuda Y., Okada Y. The disappearance rate of intraventricular bradykinin in the brain of the conscious rat. Biochem. Biophys. Res. Commun. 1982;107:1461–1466. doi: 10.1016/S0006-291X(82)80163-0. PubMed DOI
Retamal J.S., Ramirez-Garcia P.D., Shenoy P.A., Poole D.P., Veldhuis N.A. Internalized GPCRs as Potential Therapeutic Targets for the Management of Pain. Front. Mol. Neurosci. 2019;12:273. doi: 10.3389/fnmol.2019.00273. PubMed DOI PMC
Zimmerman B., Simaan M., Akoume M.Y., Houri N., Chevallier S., Seguela P., Laporte S.A. Role of ssarrestins in bradykinin B2 receptor-mediated signalling. Cell. Signal. 2011;23:648–659. doi: 10.1016/j.cellsig.2010.11.016. PubMed DOI
Shin J., Cho H., Hwang S.W., Jung J., Shin C.Y., Lee S.Y., Kim S.H., Lee M.G., Choi Y.H., Kim J., et al. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA. 2002;99:10150–10155. doi: 10.1073/pnas.152002699. PubMed DOI PMC
Ferreira J., da Silva G.L., Calixto J.B. Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 2004;141:787–794. doi: 10.1038/sj.bjp.0705546. PubMed DOI PMC
Katanosaka K., Banik R.K., Giron R., Higashi T., Tominaga M., Mizumura K. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci. Res. 2008;62:168–175. doi: 10.1016/j.neures.2008.08.004. PubMed DOI
Kollarik M., Undem B.J. Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice. J. Physiol. 2004;555:115–123. doi: 10.1113/jphysiol.2003.054890. PubMed DOI PMC
Rong W., Hillsley K., Davis J.B., Hicks G., Winchester W.J., Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 2004;560:867–881. doi: 10.1113/jphysiol.2004.071746. PubMed DOI PMC
Dickenson A.H., Dray A. Selective antagonism of capsaicin by capsazepine: Evidence for a spinal receptor site in capsaicin-induced antinociception. Br. J. Pharmacol. 1991;104:1045–1049. doi: 10.1111/j.1476-5381.1991.tb12547.x. PubMed DOI PMC
Zahner M.R., Li D.P., Chen S.R., Pan H.L. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 2003;551:515–523. doi: 10.1113/jphysiol.2003.048207. PubMed DOI PMC
Petho G., Reeh P.W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev. 2012;92:1699–1775. doi: 10.1152/physrev.00048.2010. PubMed DOI
Mizumura K., Sugiura T., Katanosaka K., Banik R.K., Kozaki Y. Excitation and sensitization of nociceptors by bradykinin: What do we know? Exp. Brain Res. 2009;196:53–65. doi: 10.1007/s00221-009-1814-5. PubMed DOI
Huang J., Zhang X., McNaughton P.A. Inflammatory pain: The cellular basis of heat hyperalgesia. Curr. Neuropharmacol. 2006;4:197–206. doi: 10.2174/157015906778019554. PubMed DOI PMC
Sugiura T., Tominaga M., Katsuya H., Mizumura K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 2002;88:544–548. doi: 10.1152/jn.2002.88.1.544. PubMed DOI
Kumar R., Geron M., Hazan A., Priel A. Endogenous and Exogenous Vanilloids Evoke Disparate TRPV1 Activation to Produce Distinct Neuronal Responses. Front. Pharmacol. 2020;11:903. doi: 10.3389/fphar.2020.00903. PubMed DOI PMC