Spinal PAR2 Activation Contributes to Hypersensitivity Induced by Peripheral Inflammation in Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09853S
Grantová Agentura České Republiky
CZ.1.05/1.1.00/02.0109
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO67985823
Fyziologický ústav AV ČR
PubMed
33498178
PubMed Central
PMC7863954
DOI
10.3390/ijms22030991
PII: ijms22030991
Knihovny.cz E-zdroje
- Klíčová slova
- PAR2, TRPV1, inflammatory pain, nociception, peripheral inflammation, spinal cord, superficial dorsal horn, synaptic transmission, thermal hyperalgesia,
- MeSH
- anilidy farmakologie MeSH
- buňky zadních rohů míšních účinky léků metabolismus fyziologie MeSH
- cinnamáty farmakologie MeSH
- excitační postsynaptické potenciály MeSH
- hyperalgezie etiologie metabolismus patofyziologie MeSH
- karagenan farmakologie toxicita MeSH
- kationtové kanály TRPV antagonisté a inhibitory metabolismus MeSH
- krysa rodu Rattus MeSH
- miniaturní postsynaptické potenciály MeSH
- nocicepce MeSH
- potkani Wistar MeSH
- receptor PAR-2 metabolismus MeSH
- staurosporin farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anilidy MeSH
- cinnamáty MeSH
- karagenan MeSH
- kationtové kanály TRPV MeSH
- N-(3-methoxyphenyl)-4-chlorocinnamanilide MeSH Prohlížeč
- receptor PAR-2 MeSH
- staurosporin MeSH
- Trpv1 protein, rat MeSH Prohlížeč
The mechanisms of inflammatory pain need to be identified in order to find new superior treatments. Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) are highly co-expressed in dorsal root ganglion neurons and implicated in pain development. Here, we examined the role of spinal PAR2 in hyperalgesia and the modulation of synaptic transmission in carrageenan-induced peripheral inflammation, using intrathecal (i.t.) treatment in the behavioral experiments and recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs and eEPSCs) in spinal cord slices. Intrathecal PAR2-activating peptide (AP) administration aggravated the carrageenan-induced thermal hyperalgesia, and this was prevented by a TRPV1 antagonist (SB 366791) and staurosporine i.t. pretreatment. Additionally, the frequency of the mEPSC and sEPSC and the amplitude of the eEPSC recorded from the superficial dorsal horn neurons were enhanced after acute PAR2 AP application, while prevented with SB 366791 or staurosporine pretreatment. PAR2 antagonist application reduced the thermal hyperalgesia and decreased the frequency of mEPSC and sEPSC and the amplitude of eEPSC. Our findings highlight the contribution of spinal PAR2 activation to carrageenan-induced hyperalgesia and the importance of dorsal horn PAR2 and TRPV1 receptor interactions in the modulation of nociceptive synaptic transmission.
Zobrazit více v PubMed
Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA. 1994;91:9208–9212. doi: 10.1073/pnas.91.20.9208. PubMed DOI PMC
Nystedt S., Ramakrishnan V., Sundelin J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J. Biol. Chem. 1996;271:14910–14915. doi: 10.1074/jbc.271.25.14910. PubMed DOI
Kelso E.B., Lockhart J.C., Hembrough T., Dunning L., Plevin R., Hollenberg M.D., Sommerhoff C.P., McLean J.S., Ferrell W.R. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther. 2006;316:1017–1024. doi: 10.1124/jpet.105.093807. PubMed DOI
Vergnolle N., Hollenberg M.D., Sharkey K.A., Wallace J.L. Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol. 1999;127:1083–1090. doi: 10.1038/sj.bjp.0702634. PubMed DOI PMC
Steinhoff M., Vergnolle N., Young S.H., Tognetto M., Amadesi S., Ennes H.S., Trevisani M., Hollenberg M.D., Wallace J.L., Caughey G.H., et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 2000;6:151–158. doi: 10.1038/72247. PubMed DOI
Bunnett N.W. Protease-activated receptors: How proteases signal to cells to cause inflammation and pain. Semin Thromb Hemost. 2006;32(Suppl. 1):39–48. doi: 10.1055/s-2006-939553. PubMed DOI
Jimenez-Vargas N.N., Pattison L.A., Zhao P., Lieu T., Latorre R., Jensen D.D., Castro J., Aurelio L., Le G.T., Flynn B., et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc. Natl. Acad. Sci. USA. 2018;115:E7438–E7447. doi: 10.1073/pnas.1721891115. PubMed DOI PMC
Ossovskaya V.S., Bunnett N.W. Protease-activated receptors: Contribution to physiology and disease. Physiol. Rev. 2004;84:579–621. doi: 10.1152/physrev.00028.2003. PubMed DOI
Zhao P., Lieu T., Barlow N., Metcalf M., Veldhuis N.A., Jensen D.D., Kocan M., Sostegni S., Haerteis S., Baraznenok V., et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J. Biol. Chem. 2014;289:27215–27234. doi: 10.1074/jbc.M114.599712. PubMed DOI PMC
Lieu T., Savage E., Zhao P., Edgington-Mitchell L., Barlow N., Bron R., Poole D.P., McLean P., Lohman R.J., Fairlie D.P., et al. Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2. Br. J. Pharmacol. 2016;173:2752–2765. doi: 10.1111/bph.13554. PubMed DOI PMC
Bohm S.K., Kong W., Bromme D., Smeekens S.P., Anderson D.C., Connolly A., Kahn M., Nelken N.A., Coughlin S.R., Payan D.G., et al. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 1996;314:1009–1016. doi: 10.1042/bj3141009. PubMed DOI PMC
Kanke T., Ishiwata H., Kabeya M., Saka M., Doi T., Hattori Y., Kawabata A., Plevin R. Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3H]2-furoyl-LIGRL-NH2, to human PAR2. Br. J. Pharmacol. 2005;145:255–263. doi: 10.1038/sj.bjp.0706189. PubMed DOI PMC
Ricks T.K., Trejo J. Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J. Biol. Chem. 2009;284:34444–34457. doi: 10.1074/jbc.M109.048942. PubMed DOI PMC
Kumar P., Lau C.S., Mathur M., Wang P., DeFea K.A. Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Am. J. Physiol. Cell Physiol. 2007;293:C346–C357. doi: 10.1152/ajpcell.00010.2007. PubMed DOI
Amadesi S., Nie J., Vergnolle N., Cottrell G.S., Grady E.F., Trevisani M., Manni C., Geppetti P., McRoberts J.A., Ennes H., et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J. Neurosci. 2004;24:4300–4312. doi: 10.1523/JNEUROSCI.5679-03.2004. PubMed DOI PMC
Dai Y., Moriyama T., Higashi T., Togashi K., Kobayashi K., Yamanaka H., Tominaga M., Noguchi K. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J. Neurosci. 2004;24:4293–4299. doi: 10.1523/JNEUROSCI.0454-04.2004. PubMed DOI PMC
Salzer I., Ray S., Schicker K., Boehm S. Nociceptor Signalling through ion Channel Regulation via GPCRs. Int. J. Mol. Sci. 2019;20:2488. doi: 10.3390/ijms20102488. PubMed DOI PMC
DeFea K.A., Zalevsky J., Thoma M.S., Déry O., Mullins R.D., Bunnett N.W. beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 2000;148:1267–1281. doi: 10.1083/jcb.148.6.1267. PubMed DOI PMC
Stalheim L., Ding Y., Gullapalli A., Paing M.M., Wolfe B.L., Morris D.R., Trejo J. Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol. Pharmacol. 2005;67:78–87. doi: 10.1124/mol.104.006072. PubMed DOI
Zhao P., Metcalf M., Bunnett N.W. Biased signaling of protease-activated receptors. Front. Endocrinol. 2014;5:67. doi: 10.3389/fendo.2014.00067. PubMed DOI PMC
Alier K.A., Endicott J.A., Stemkowski P.L., Cenac N., Cellars L., Chapman K., Andrade-Gordon P., Vergnolle N., Smith P.A. Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. J. Pharmacol. Exp. Ther. 2008;324:224–233. doi: 10.1124/jpet.107.129171. PubMed DOI
Caterina M.J., Leffler A., Malmberg A.B., Martin W.J., Trafton J., Petersen-Zeitz K.R., Koltzenburg M., Basbaum A.I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–313. doi: 10.1126/science.288.5464.306. PubMed DOI
Spicarova D., Nerandzic V., Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol. Res. 2014;63:S225–S236. doi: 10.33549/physiolres.932713. PubMed DOI
Amadesi S., Cottrell G.S., Divino L., Chapman K., Grady E.F., Bautista F., Karanjia R., Barajas-Lopez C., Vanner S., Vergnolle N., et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J. Physiol. 2006;575:555–571. doi: 10.1113/jphysiol.2006.111534. PubMed DOI PMC
Spicarova D., Palecek J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J. Neurophysiol. 2009;102:234–243. doi: 10.1152/jn.00024.2009. PubMed DOI
Spicarova D., Palecek J. Tumor necrosis factor alpha sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine. J. Neuroinflamm. 2010;7:49. doi: 10.1186/1742-2094-7-49. PubMed DOI PMC
Spicarova D., Adamek P., Kalynovska N., Mrozkova P., Palecek J. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology. 2014;81:75–84. doi: 10.1016/j.neuropharm.2014.01.041. PubMed DOI
Koetzner L., Gregory J.A., Yaksh T.L. Intrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity. J. Pharmacol. Exp. Ther. 2004;311:356–363. doi: 10.1124/jpet.104.069484. PubMed DOI
Grant A.D., Cottrell G.S., Amadesi S., Trevisani M., Nicoletti P., Materazzi S., Altier C., Cenac N., Zamponi G.W., Bautista-Cruz F., et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 2007;578:715–733. doi: 10.1113/jphysiol.2006.121111. PubMed DOI PMC
Dai Y., Wang S., Tominaga M., Yamamoto S., Fukuoka T., Higashi T., Kobayashi K., Obata K., Yamanaka H., Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Investig. 2007;117:1979–1987. doi: 10.1172/JCI30951. PubMed DOI PMC
Chen Y., Yang C., Wang Z.J. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 2011;193:440–451. doi: 10.1016/j.neuroscience.2011.06.085. PubMed DOI
Linley J.E., Rose K., Patil M., Robertson B., Akopian A.N., Gamper N. Inhibition of M current in sensory neurons by exogenous proteases: A signaling pathway mediating inflammatory nociception. J. Neurosci. 2008;28:11240–11249. doi: 10.1523/JNEUROSCI.2297-08.2008. PubMed DOI PMC
Jin X., Shah S., Liu Y., Zhang H., Lees M., Fu Z., Lippiat J.D., Beech D.J., Sivaprasadarao A., Baldwin S.A., et al. Activation of the Cl− channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci. Signal. 2013;6:ra73. doi: 10.1126/scisignal.2004184. PubMed DOI PMC
Mrozkova P., Spicarova D., Palecek J. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors. PLoS ONE. 2016;11:e0163991. doi: 10.1371/journal.pone.0163991. PubMed DOI PMC
Mrozkova P., Palecek J., Spicarova D. The role of protease-activated receptor type 2 in nociceptive signaling and pain. Physiol. Res. 2016;65:357–367. doi: 10.33549/physiolres.933269. PubMed DOI
Huang Z., Tao K., Zhu H., Miao X., Wang Z., Yu W., Lu Z. Acute PAR2 activation reduces GABAergic inhibition in the spinal dorsal horn. Brain Res. 2011;1425:20–26. doi: 10.1016/j.brainres.2011.09.058. PubMed DOI
Noorbakhsh F., Tsutsui S., Vergnolle N., Boven L.A., Shariat N., Vodjgani M., Warren K.G., Andrade-Gordon P., Hollenberg M.D., Power C. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 2006;203:425–435. doi: 10.1084/jem.20052148. PubMed DOI PMC
Cenac N., Coelho A.M., Nguyen C., Compton S., Andrade-Gordon P., MacNaughton W.K., Wallace J.L., Hollenberg M.D., Bunnett N.W., Garcia-Villar R., et al. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol. 2002;161:1903–1915. doi: 10.1016/S0002-9440(10)64466-5. PubMed DOI PMC
Radulovic M., Yoon H., Wu J., Mustafa K., Fehlings M.G., Scarisbrick I.A. Genetic targeting of protease activated receptor 2 reduces inflammatory astrogliosis and improves recovery of function after spinal cord injury. Neurobiol. Dis. 2015;83:75–89. doi: 10.1016/j.nbd.2015.08.021. PubMed DOI PMC
Ferrell W.R., Lockhart J.C., Kelso E.B., Dunning L., Plevin R., Meek S.E., Smith A.J., Hunter G.D., McLean J.S., McGarry F., et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Investig. 2003;111:35–41. doi: 10.1172/JCI16913. PubMed DOI PMC
Vergnolle N., Bunnett N.W., Sharkey K.A., Brussee V., Compton S.J., Grady E.F., Cirino G., Gerard N., Basbaum A.I., Andrade-Gordon P., et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat. Med. 2001;7:821–826. doi: 10.1038/89945. PubMed DOI
Cenac N. Protease-activated receptors as therapeutic targets in visceral pain. Curr. Neuropharmacol. 2013;11:598–605. doi: 10.2174/1570159X113119990039. PubMed DOI PMC
Velázquez K.T., Mohammad H., Sweitzer S.M. Protein kinase C in pain: Involvement of multiple isoforms. Pharmacol. Res. 2007;55:578–589. doi: 10.1016/j.phrs.2007.04.006. PubMed DOI PMC
Honore P., Wismer C.T., Mikusa J., Zhu C.Z., Zhong C., Gauvin D.M., Gomtsyan A., El Kouhen R., Lee C.H., Marsh K., et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 2005;314:410–421. doi: 10.1124/jpet.105.083915. PubMed DOI
Cui M., Honore P., Zhong C., Gauvin D., Mikusa J., Hernandez G., Chandran P., Gomtsyan A., Brown B., Bayburt E.K., et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 2006;26:9385–9393. doi: 10.1523/JNEUROSCI.1246-06.2006. PubMed DOI PMC
Yu L., Yang F., Luo H., Liu F.Y., Han J.S., Xing G.G., Wan Y. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol. Pain. 2008;4:61. doi: 10.1186/1744-8069-4-61. PubMed DOI PMC
Huang Y., Chen S.R., Chen H., Pan H.L. Endogenous transient receptor potential ankyrin 1 and vanilloid 1 activity potentiates glutamatergic input to spinal lamina I neurons in inflammatory pain. J. Neurochem. 2019;149:381–398. doi: 10.1111/jnc.14677. PubMed DOI PMC
Davis J.B., Gray J., Gunthorpe M.J., Hatcher J.P., Davey P.T., Overend P., Harries M.H., Latcham J., Clapham C., Atkinson K., et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–187. doi: 10.1038/35012076. PubMed DOI
Wang Y., Gao Y., Tian Q., Deng Q., Zhou T., Liu Q., Mei K., Liu H., Ma R., Ding Y., et al. TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nat. Commun. 2018;9:1529. doi: 10.1038/s41467-018-03974-7. PubMed DOI PMC
Gregus A.M., Doolen S., Dumlao D.S., Buczynski M.W., Takasusuki T., Fitzsimmons B.L., Hua X.Y., Taylor B.K., Dennis E.A., Yaksh T.L. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci. USA. 2012;109:6721–6726. doi: 10.1073/pnas.1110460109. PubMed DOI PMC
Tohda C., Sasaki M., Konemura T., Sasamura T., Itoh M., Kuraishi Y. Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J. Neurochem. 2001;76:1628–1635. doi: 10.1046/j.1471-4159.2001.00193.x. PubMed DOI
Abooj M., Bishnoi M., Bosgraaf C.A., Premkumar L.S. Changes in Spinal Cord Following Inflammatory and Neuropathic Pain and the Effectiveness of Resiniferatoxin. Open Pain J. 2016;9:1–14. doi: 10.2174/1876386301609010001. DOI
Ren K., Dubner R. Inflammatory Models of Pain and Hyperalgesia. ILAR J. 1999;40:111–118. doi: 10.1093/ilar.40.3.111. PubMed DOI
Soh U.J., Dores M.R., Chen B., Trejo J. Signal transduction by protease-activated receptors. Br. J. Pharmacol. 2010;160:191–203. doi: 10.1111/j.1476-5381.2010.00705.x. PubMed DOI PMC
Cesare P., Moriondo A., Vellani V., McNaughton P.A. Ion channels gated by heat. Proc. Natl. Acad. Sci. USA. 1999;96:7658–7663. doi: 10.1073/pnas.96.14.7658. PubMed DOI PMC
Ding-Pfennigdorff D., Averbeck B., Michaelis M. Stimulation of PAR-2 excites and sensitizes rat cutaneous C-nociceptors to heat. Neuroreport. 2004;15:2071–2075. doi: 10.1097/00001756-200409150-00015. PubMed DOI
Bao Y., Hou W., Yang L., Liu R., Gao Y., Kong X., Shi Z., Li W., Zheng H., Jiang S., et al. Increased expression of protease-activated receptor 2 and 4 within dorsal root ganglia in a rat model of bone cancer pain. J. Mol. Neurosci. 2015;55:706–714. doi: 10.1007/s12031-014-0409-1. PubMed DOI
Bao Y., Hou W., Liu R., Gao Y., Kong X., Yang L., Shi Z., Li W., Zheng H., Jiang S., et al. PAR2-mediated upregulation of BDNF contributes to central sensitization in bone cancer pain. Mol. Pain. 2014;10:28. doi: 10.1186/1744-8069-10-28. PubMed DOI PMC
Chen K., Zhang Z.F., Liao M.F., Yao W.L., Wang J., Wang X.R. Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J. Neurol. Sci. 2015;352:62–67. doi: 10.1016/j.jns.2015.03.029. PubMed DOI
Chen D., Liu N., Li M., Liang S. Blocking PAR2 Alleviates Bladder Pain and Hyperactivity via TRPA1 Signal. Transl. Neurosci. 2016;7:133–138. doi: 10.1515/tnsci-2016-0020. PubMed DOI PMC
Lucena F., McDougall J.J. Pain responses to protease-activated receptor-2 stimulation in the spinal cord of naïve and arthritic rats. Neurosci. Lett. 2020;739:135391. doi: 10.1016/j.neulet.2020.135391. PubMed DOI
Spicarova D., Nerandzic V., Palecek J. Modulation of spinal cord synaptic activity by tumor necrosis factor α in a model of peripheral neuropathy. J. Neuroinflamm. 2011;8:177. doi: 10.1186/1742-2094-8-177. PubMed DOI PMC
Uchytilova E., Spicarova D., Palecek J. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms. Mol. Pain. 2014;10:67. doi: 10.1186/1744-8069-10-67. PubMed DOI PMC