Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27755539
PubMed Central
PMC5068818
DOI
10.1371/journal.pone.0163991
PII: PONE-D-16-24042
Knihovny.cz E-zdroje
- MeSH
- alergie metabolismus patologie MeSH
- anilidy farmakologie MeSH
- buňky zadních rohů míšních účinky léků fyziologie MeSH
- chování zvířat účinky léků MeSH
- cinnamáty farmakologie MeSH
- excitační postsynaptické potenciály účinky léků MeSH
- hyperalgezie etiologie prevence a kontrola MeSH
- inhibitory proteinkinas farmakologie MeSH
- kationtové kanály TRPV antagonisté a inhibitory metabolismus MeSH
- krysa rodu Rattus MeSH
- metoda terčíkového zámku MeSH
- mícha metabolismus MeSH
- nervový přenos fyziologie MeSH
- oligopeptidy farmakologie MeSH
- potkani Wistar MeSH
- receptor PAR-2 agonisté metabolismus MeSH
- staurosporin farmakologie MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anilidy MeSH
- cinnamáty MeSH
- inhibitory proteinkinas MeSH
- kationtové kanály TRPV MeSH
- N-(3-methoxyphenyl)-4-chlorocinnamanilide MeSH Prohlížeč
- oligopeptidy MeSH
- receptor PAR-2 MeSH
- seryl-leucyl-isoleucyl-glycyl-lysyl-valinamide MeSH Prohlížeč
- staurosporin MeSH
- TRPV1 receptor MeSH Prohlížeč
Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception.
Zobrazit více v PubMed
Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84: 579–621. 10.1152/physrev.00028.2003 PubMed DOI
Vergnolle N (2000) Review article: proteinase-activated receptors—novel signals for gastrointestinal pathophysiology. Aliment Pharmacol Ther 14: 257–266. PubMed
McDougall JJ, Muley MM (2015) The role of proteases in pain. Handb Exp Pharmacol 227: 239–260. 10.1007/978-3-662-46450-2_12 PubMed DOI
Vergnolle N (2009) Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 123: 292–309. 10.1016/j.pharmthera.2009.05.004 PubMed DOI
Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J (1995) Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 232: 84–89. PubMed
Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, et al. (2001) The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21: 9036–9042. PubMed PMC
Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274: C1429–1452. PubMed
Hollenberg MD, Compton SJ (2002) International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol Rev 54: 203–217. PubMed
Rothmeier AS, Ruf W (2012) Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 34: 133–149. 10.1007/s00281-011-0289-1 PubMed DOI
Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, et al. (2006) Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med 203: 425–435. 10.1084/jem.20052148 PubMed DOI PMC
Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, et al. (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6: 151–158. 10.1038/72247 PubMed DOI
Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, et al. (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14: 595–608. PubMed
Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, et al. (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24: 4300–4312. 10.1523/JNEUROSCI.5679-03.2004 PubMed DOI PMC
Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, et al. (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24: 4293–4299. 10.1523/JNEUROSCI.0454-04.2004 PubMed DOI PMC
Alier KA, Endicott JA, Stemkowski PL, Cenac N, Cellars L, et al. (2008) Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. J Pharmacol Exp Ther 324: 224–233. 10.1124/jpet.107.129171 PubMed DOI
Fujita T, Liu T, Nakatsuka T, Kumamoto E (2009) Proteinase-activated receptor-1 activation presynaptically enhances spontaneous glutamatergic excitatory transmission in adult rat substantia gelatinosa neurons. J Neurophysiol 102: 312–319. 10.1152/jn.91117.2008 PubMed DOI
Huang Z, Tao K, Zhu H, Miao X, Wang Z, et al. (2011) Acute PAR2 activation reduces GABAergic inhibition in the spinal dorsal horn. Brain Res 1425: 20–26. 10.1016/j.brainres.2011.09.058 PubMed DOI
Chen K, Zhang ZF, Liao MF, Yao WL, Wang J, et al. (2015) Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J Neurol Sci 352: 62–67. 10.1016/j.jns.2015.03.029 PubMed DOI
Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, et al. (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578: 715–733. 10.1113/jphysiol.2006.121111 PubMed DOI PMC
Amadesi S, Grant AD, Cottrell GS, Vaksman N, Poole DP, et al. (2009) Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. J Comp Neurol 516: 141–156. 10.1002/cne.22104 PubMed DOI PMC
Hung DT, Wong YH, Vu TK, Coughlin SR (1992) The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 267: 20831–20834. PubMed
Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, et al. (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288: 5790–5802. 10.1074/jbc.M112.438184 PubMed DOI PMC
Svensson CI, Yaksh TL (2002) The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 42: 553–583. 10.1146/annurev.pharmtox.42.092401.143905 PubMed DOI
Koetzner L, Gregory JA, Yaksh TL (2004) Intrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity. J Pharmacol Exp Ther 311: 356–363. 10.1124/jpet.104.069484 PubMed DOI
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, et al. (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117: 1979–1987. 10.1172/JCI30951 PubMed DOI PMC
Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193: 440–451. 10.1016/j.neuroscience.2011.06.085 PubMed DOI
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, et al. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824. 10.1038/39807 PubMed DOI
Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300: 1284–1288. 10.1126/science.1083646 PubMed DOI
Spicarova D, Nerandzic V, Palecek J (2014) Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res 63 Suppl 1: S225–236. PubMed
Spicarova D, Palecek J (2008) The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res 57 Suppl 3: S69–77. PubMed
Ferrini F, Salio C, Vergnano AM, Merighi A (2007) Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse. Pain 129: 195–209. 10.1016/j.pain.2007.01.009 PubMed DOI
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543. PubMed
Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277: 13375–13378. 10.1074/jbc.C200104200 PubMed DOI
Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, et al. (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 575: 555–571. 10.1113/jphysiol.2006.111534 PubMed DOI PMC
Spicarova D, Palecek J (2009) The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol 102: 234–243. 10.1152/jn.00024.2009 PubMed DOI
Bao Y, Gao Y, Hou W, Yang L, Kong X, et al. (2015) Engagement of signaling pathways of protease-activated receptor 2 and mu-opioid receptor in bone cancer pain and morphine tolerance. Int J Cancer 137: 1475–1483. 10.1002/ijc.29497 PubMed DOI
Wei H, Wei Y, Tian F, Niu T, Yi G (2016) Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury. Physiol Res 65: 145–153. PubMed
Suen JY, Gardiner B, Grimmond S, Fairlie DP (2010) Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 5: e13809 10.1371/journal.pone.0013809 PubMed DOI PMC
Vergnolle N, Hollenberg MD, Sharkey KA, Wallace JL (1999) Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br J Pharmacol 127: 1083–1090. 10.1038/sj.bjp.0702634 PubMed DOI PMC
Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, et al. (2001) Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med 7: 821–826. 10.1038/89945 PubMed DOI
Weinstein JR, Gold SJ, Cunningham DD, Gall CM (1995) Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA. J Neurosci 15: 2906–2919. PubMed PMC
Smith-Swintosky VL, Cheo-Isaacs CT, D'Andrea MR, Santulli RJ, Darrow AL, et al. (1997) Protease-activated receptor-2 (PAR-2) is present in the rat hippocampus and is associated with neurodegeneration. J Neurochem 69: 1890–1896. PubMed
Bushell TJ, Plevin R, Cobb S, Irving AJ (2006) Characterization of proteinase-activated receptor 2 signalling and expression in rat hippocampal neurons and astrocytes. Neuropharmacology 50: 714–725. 10.1016/j.neuropharm.2005.11.024 PubMed DOI
Tsai SH, Sheu MT, Liang YC, Cheng HT, Fang SS, et al. (2009) TGF-beta inhibits IL-1beta-activated PAR-2 expression through multiple pathways in human primary synovial cells. J Biomed Sci 16: 97 10.1186/1423-0127-16-97 PubMed DOI PMC
Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, et al. (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46: 133–149. PubMed
Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J (2014) TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology 81: 75–84. 10.1016/j.neuropharm.2014.01.041 PubMed DOI
Kawabata A, Kanke T, Yonezawa D, Ishiki T, Saka M, et al. (2004) Potent and metabolically stable agonists for protease-activated receptor-2: evaluation of activity in multiple assay systems in vitro and in vivo. J Pharmacol Exp Ther 309: 1098–1107. 10.1124/jpet.103.061010 PubMed DOI
Cenac N (2013) Protease-activated receptors as therapeutic targets in visceral pain. Curr Neuropharmacol 11: 598–605. 10.2174/1570159X113119990039 PubMed DOI PMC
Bao Y, Hou W, Liu R, Gao Y, Kong X, et al. (2014) PAR2-mediated upregulation of BDNF contributes to central sensitization in bone cancer pain. Mol Pain 10: 28 10.1186/1744-8069-10-28 PubMed DOI PMC
Tillu DV, Hassler SN, Burgos-Vega CC, Quinn TL, Sorge RE, et al. (2015) Protease-activated receptor 2 activation is sufficient to induce the transition to a chronic pain state. Pain 156: 859–867. 10.1097/j.pain.0000000000000125 PubMed DOI PMC
Han L, Ma C, Liu Q, Weng HJ, Cui Y, et al. (2013) A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 16: 174–182. 10.1038/nn.3289 PubMed DOI PMC
Namer B, Reeh P (2013) Scratching an itch. Nat Neurosci 16: 117–118. 10.1038/nn.3316 PubMed DOI
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, et al. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313. PubMed
Matta JA, Ahern GP (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585: 469–482. 10.1113/jphysiol.2007.144287 PubMed DOI PMC
Huang ZJ, Li HC, Cowan AA, Liu S, Zhang YK, et al. (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153: 1426–1437. 10.1016/j.pain.2012.03.025 PubMed DOI
Liu S, Liu YP, Yue DM, Liu GJ (2013) Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain. PubMed
Wu Y, Liu Y, Hou P, Yan Z, Kong W, et al. (2013) TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons. PLoS One 8: e78203 10.1371/journal.pone.0078203 PubMed DOI PMC
Wu ZZ, Chen SR, Pan HL (2006) Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141: 407–419. 10.1016/j.neuroscience.2006.03.023 PubMed DOI
Liu L, Lo Y, Chen I, Simon SA (1997) The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J Neurosci 17: 4101–4111. PubMed PMC
Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, et al. (2013) Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat Neurosci 16: 1754–1763. 10.1038/nn.3563 PubMed DOI PMC
Bao Y, Hou W, Yang L, Liu R, Gao Y, et al. (2014) Increased Expression of Protease-Activated Receptor 2 and 4 Within Dorsal Root Ganglia in a Rat Model of Bone Cancer Pain. J Mol Neurosci. PubMed
Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C (2003) Proteinase-activated receptors in the nervous system. Nat Rev Neurosci 4: 981–990. 10.1038/nrn1255 PubMed DOI
Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36: 57–68. PubMed
Spinal PAR2 Activation Contributes to Hypersensitivity Induced by Peripheral Inflammation in Rats