20:4-NAPE induced changes of mechanical sensitivity and DRG neurons excitability are concentration dependent and mediated via NAPE-PLD

. 2025 Apr 23 ; 15 (1) : 14131. [epub] 20250423

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40269193

Grantová podpora
21-02371S Grant Agency of the Czech Republic
LX22NPO5104 European Union Next Generation EU
RVO67985823 Institutional support

Odkazy

PubMed 40269193
PubMed Central PMC12019079
DOI 10.1038/s41598-025-98567-y
PII: 10.1038/s41598-025-98567-y
Knihovny.cz E-zdroje

Alterations in the excitability of dorsal root ganglion (DRG) neurons are critical in the pathogenesis of acute and chronic pain. Neurotransmitter release from the terminals of DRG neurons is regulated by cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both activated by anandamide (AEA). In our experiments, the AEA precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE) was used to study the modulation of nociceptive DRG neurons excitability using K+-evoked Ca2+ transients. Intrathecal administration was used to evaluate in vivo effects. Application of 20:4-NAPE at lower concentrations (10 nM - 1 µM) decreased the excitability of DRG neurons, whereas the higher (10 µM) increased it. Both effects of 20:4-NAPE were blocked by the N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor LEI-401. Similarly, lower concentrations of externally applied AEA (1 nM - 10 nM) inhibited DRG neurons, whereas higher concentration (100 nM) did not change it. High AEA concentration (10 µM) evoked Ca2+ transients dependent on TRPV1 activation in separate experiments. Inhibition of the CB1 receptor by PF514273 (400 nM) prevented the 20:4-NAPE- and AEA-induced inhibition, whereas TRPV1 inhibition by SB366791 (1 µM) prevented the increased DRG neuron excitability. In behavioral tests, lower 20:4-NAPE concentration caused hyposensitivity, while higher evoked mechanical allodynia. Intrathecal LEI-401 prevented both in vivo effects of 20:4-NAPE. These results highlight anti- and pro-nociceptive effects of 20:4-NAPE mediated by CB1 and TRPV1 in concentration-dependent manner. Our study underscores the complexity of endocannabinoid signaling in pain transmission modulation and highlights 20:4-NAPE as a potential therapeutic target, offering new insights for developing analgesic strategies.

Zobrazit více v PubMed

Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science258 (5090), 1946–1949 (1992). PubMed

Clapper, J. R. et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat. Neurosci.13 (10), 1265–1270 (2010). PubMed PMC

Hohmann, A. G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature435 (7045), 1108–1112 (2005). PubMed

Donvito, G. et al. The endogenous cannabinoid system: A budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology: Official Publication Am. Coll. Neuropsychopharmacol.43 (1), 52–79 (2018). PubMed PMC

Finn, D. P. et al. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain162 (Suppl 1), S5–S25 (2021). PubMed PMC

Mallet, C., Dubray, C. & Duale, C. FAAH inhibitors in the limelight, but regrettably. Int. J. Clin. Pharmacol. Ther.54 (7), 498–501 (2016). PubMed PMC

Milligan, A. L., Szabo-Pardi, T. A. & Burton, M. D. Cannabinoid receptor type 1 and its role as an analgesic: an opioid alternative?? J. Dual Diagnosis. 16 (1), 106–119 (2020). PubMed PMC

Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system, nature reviews. Drug Discovery. 17 (9), 623–639 (2018). PubMed

Spicarova, D. & Palecek, J. Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level, Physiological research/Academia Scientiarum Bohemoslovaca (2024). PubMed PMC

Ahluwalia, J., Urban, L., Capogna, M., Bevan, S. & Nagy, I. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience100 (4), 685–688 (2000). PubMed

Farquhar-Smith, W. P. et al. Cannabinoid CB(1) receptor expression in rat spinal cord. Mol. Cell. Neurosci.15 (6), 510–521 (2000). PubMed

Howlett, A. C. et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev.54 (2), 161–202 (2002). PubMed

Baccei, M. L., Bardoni, R. & Fitzgerald, M. Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J. Physiol.549 (Pt 1), 231–242 (2003). PubMed PMC

Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389 (6653), 816–824 (1997). PubMed

Spicarova, D. & Palecek, J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J. Neurophysiol.102 (1), 234–243 (2009). PubMed

Morisset, V., Ahluwalia, J., Nagy, I. & Urban, L. Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. Eur. J. Pharmacol.429 (1–3), 93–100 (2001). PubMed

Pontearso, M., Slepicka, J., Bhattacharyya, A., Spicarova, D. & Palecek, J. Dual effect of Anandamide on spinal nociceptive transmission in control and inflammatory conditions. Biomed. Pharmacotherapy = Biomedecine Pharmacotherapie. 173, 116369 (2024). PubMed

Nerandzic, V. et al. Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by N-arachidonoylphosphatidylethanolamine. Br. J. Pharmacol.175 (12), 2322–2336 (2018). PubMed PMC

Spicarova, D. et al. Inhibition of synaptic transmission by Anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front. Mol. Neurosci.16, 1188503 (2023). PubMed PMC

Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid Anandamide in central neurons. Nature372 (6507), 686–691 (1994). PubMed

Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating Anandamide and its congeners. J. Biol. Chem.279 (7), 5298–5305 (2004). PubMed

Mock, E. D., Gagestein, B. & van der Stelt, M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog. Lipid Res.89, 101194 (2023). PubMed

Vellani, V. et al. Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology55 (8), 1274–1279 (2008). PubMed

Varga, A. et al. Anandamide produced by Ca(2+)-insensitive enzymes induces excitation in primary sensory neurons. Pflug. Arch. Eur. J. Physiol.466 (7), 1421–1435 (2014). PubMed

Malin, S. A., Davis, B. M. & Molliver, D. C. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat. Protoc.2 (1), 152–160 (2007). PubMed

Adamek, P. et al. Dual PI3Kdelta/gamma inhibitor Duvelisib prevents development of neuropathic pain in model of Paclitaxel-Induced peripheral neuropathy. J. Neuroscience: Official J. Soc. Neurosci.42 (9), 1864–1881 (2022). PubMed PMC

Svobodova, I., Bhattaracharya, A., Ivetic, M., Bendova, Z. & Zemkova, H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front. Pharmacol.9, 192 (2018). PubMed PMC

Dittert, I. et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 151 (2), 178–185 (2006). PubMed

Heles, M. et al. Chemokine CCL2 prevents opioid-induced Inhibition of nociceptive synaptic transmission in spinal cord dorsal Horn. J. Neuroinflamm.18 (1), 279 (2021). PubMed PMC

Uchytilova, E., Spicarova, D. & Palecek, J. Hypersensitivity induced by intrathecal Bradykinin administration is enhanced by N-oleoyldopamine (OLDA) and prevented by TRPV1 antagonist. Int. J. Mol. Sci.22(7) (2021). PubMed PMC

Mrozkova, P., Spicarova, D. & Palecek, J. Spinal PAR2 activation contributes to hypersensitivity induced by peripheral inflammation in rats. Int. J. Mol. Sci.22(3) (2021). PubMed PMC

Fischbach, T., Greffrath, W., Nawrath, H. & Treede, R. D. Effects of Anandamide and noxious heat on intracellular calcium concentration in nociceptive Drg neurons of rats. J. Neurophysiol.98 (2), 929–938 (2007). PubMed

Tognetto, M. et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J. Neuroscience: Official J. Soc. Neurosci.21 (4), 1104–1109 (2001). PubMed PMC

Nagy, B. et al. Capsaicin-sensitive primary sensory neurons in the mouse express N-Acyl phosphatidylethanolamine phospholipase D. Neuroscience161 (2), 572–577 (2009). PubMed PMC

Richardson, J. D., Aanonsen, L. & Hargreaves, K. M. Antihyperalgesic effects of spinal cannabinoids. Eur. J. Pharmacol.345 (2), 145–153 (1998). PubMed

Starowicz, K. et al. Spinal Anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology62 (4), 1746–1755 (2012). PubMed

Horvath, G., Kekesi, G., Nagy, E. & Benedek, G. The role of TRPV1 receptors in the antinociceptive effect of Anandamide at spinal level. Pain134 (3), 277–284 (2008). PubMed

Smith, P. B. et al. The Pharmacological activity of Anandamide, a putative endogenous cannabinoid, in mice. J. Pharmacol. Exp. Ther.270 (1), 219–227 (1994). PubMed

Hegyi, Z., Hollo, K., Kis, G., Mackie, K. & Antal, M. Differential distribution of Diacylglycerol lipase-alpha and N-acylphosphatidylethanolamine-specific phospholipase d immunoreactivity in the superficial spinal dorsal Horn of rats. Glia60 (9), 1316–1329 (2012). PubMed PMC

Sousa-Valente, J. et al. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons. J. Comp. Neurol.525 (8), 1778–1796 (2017). PubMed

Yang, K., Kumamoto, E., Furue, H., Li, Y. Q. & Yoshimura, M. Action of capsaicin on dorsal root-evoked synaptic transmission to substantia gelatinosa neurons in adult rat spinal cord slices. Brain Res.830 (2), 268–273 (1999). PubMed

Wu, Z. Z., Chen, S. R. & Pan, H. L. Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calcium-dependent calcineurin in sensory neurons. J. Biol. Chem.280 (18), 18142–18151 (2005). PubMed

Kusudo, K., Ikeda, H. & Murase, K. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal Horn revealed by optical imaging. Mol. Pain. 2, 8 (2006). PubMed PMC

Peters, J. H., McDougall, S. J., Fawley, J. A., Smith, S. M. & Andresen, M. C. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron65 (5), 657–669 (2010). PubMed PMC

Engel, M. A. et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides45 (3), 229–237 (2011). PubMed

Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of Anandamide. Nature400 (6743), 452–457 (1999). PubMed

Ahluwalia, J., Urban, L., Bevan, S. & Nagy, I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur. J. Neurosci.17 (12), 2611–2618 (2003). PubMed

van der Stelt, M. et al. Anandamide acts as an intracellular messenger amplifying Ca2 + influx via TRPV1 channels. EMBO J.24 (17), 3026–3037 (2005). PubMed PMC

Hu, J. et al. Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury. Cell. Biosci.15 (1), 2 (2025). PubMed PMC

Evans, R. M., Scott, R. H. & Ross, R. A. Multiple actions of Anandamide on neonatal rat cultured sensory neurones. Br. J. Pharmacol.141 (7), 1223–1233 (2004). PubMed PMC

Binzen, U. et al. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience142 (2), 527–539 (2006). PubMed

Chen, J. et al. Spatial distribution of the cannabinoid type 1 and capsaicin receptors May contribute to the complexity of their crosstalk. Sci. Rep.6, 33307 (2016). PubMed PMC

Mock, E. D. et al. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat. Chem. Biol.16 (6), 667–675 (2020). PubMed PMC

Arnold, W. R. et al. Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nat. Commun.12 (1), 926 (2021). PubMed PMC

Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies, nature reviews. Drug Discovery. 21 (1), 41–59 (2022). PubMed PMC

Joseph, J. et al. Phosphorylation of TRPV1 S801 contributes to Modality-Specific hyperalgesia in mice. J. Neuroscience: Official J. Soc. Neurosci.39 (50), 9954–9966 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...