Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38957948
PubMed Central
PMC11412359
DOI
10.33549/physiolres.935371
PII: 935371
Knihovny.cz E-zdroje
- MeSH
- endokanabinoidy * metabolismus MeSH
- kationtové kanály TRPV metabolismus MeSH
- kyseliny arachidonové * metabolismus farmakologie MeSH
- lidé MeSH
- mícha * metabolismus účinky léků MeSH
- nervový přenos * fyziologie účinky léků MeSH
- nocicepce fyziologie účinky léků MeSH
- nociceptory metabolismus účinky léků fyziologie MeSH
- polynenasycené alkamidy * metabolismus MeSH
- receptor kanabinoidní CB1 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anandamide MeSH Prohlížeč
- endokanabinoidy * MeSH
- kationtové kanály TRPV MeSH
- kyseliny arachidonové * MeSH
- polynenasycené alkamidy * MeSH
- receptor kanabinoidní CB1 MeSH
Three decades ago, the first endocannabinoid, anandamide (AEA), was identified, and its analgesic effect was recognized in humans and preclinical models. However, clinical trial failures pointed out the complexity of the AEA-induced analgesia. The first synapses in the superficial laminae of the spinal cord dorsal horn represent an important modulatory site in nociceptive transmission and subsequent pain perception. The glutamatergic synaptic transmission at these synapses is strongly modulated by two primary AEA-activated receptors, cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both highly expressed on the presynaptic side formed by the endings of primary nociceptive neurons. Activation of these receptors can have predominantly inhibitory (CB1) and excitatory (TRPV1) effects that are further modulated under pathological conditions. In addition, dual AEA-mediated signaling and action may occur in primary sensory neurons and dorsal horn synapses. AEA application causes balanced inhibition and excitation of primary afferent synaptic input on superficial dorsal horn neurons in normal conditions, whereas peripheral inflammation promotes AEA-mediated inhibition. This review focuses mainly on the modulation of synaptic transmission at the spinal cord level and signaling in primary nociceptive neurons by AEA via CB1 and TRPV1 receptors. Furthermore, the spinal analgesic effect in preclinical studies and clinical aspects of AEA-mediated analgesia are considered.
Zobrazit více v PubMed
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res. 2023;89:101194. doi: 10.1016/j.plipres.2022.101194. PubMed DOI
Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, Tontini A, et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;13:1265–1270. doi: 10.1038/nn.2632. PubMed DOI PMC
Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature. 1998;394:277–281. doi: 10.1038/28393. PubMed DOI
Police A, Shankar VK, Pandey P, Rangappa S, Doerksen RJ, Narasimha Murthy S. Novel topical anandamide formulation for alleviating peripheral neuropathic pain. Int J Pharm. 2023;641:123085. doi: 10.1016/j.ijpharm.2023.123085. PubMed DOI
Habib AM, Okorokov AL, Hill MN, Bras JT, Lee MC, Li S, Gossage SJ, et al. Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. Br J Anaesth. 2019;123:e249–e253. doi: 10.1016/j.bja.2019.02.019. PubMed DOI PMC
Mikaeili H, Habib AM, Yeung CW, Santana-Varela S, Luiz AP, Panteleeva K, Zuberi S, et al. Molecular basis of FAAH-OUT-associated human pain insensitivity. Brain. 2023;146:3851–3865. doi: 10.1093/brain/awad098. PubMed DOI PMC
Fride E, Mechoulam R. Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol. 1993;231:313–314. doi: 10.1016/0014-2999(93)90468-W. PubMed DOI
Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci. 2017;10:166. doi: 10.3389/fnmol.2017.00166. PubMed DOI PMC
Nerandzic V, Mrozkova P, Adamek P, Spicarova D, Nagy I, Palecek J. Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by N-arachidonoylphosphatidylethanolamine. Br J Pharmacol. 2018;175:2322–2336. doi: 10.1111/bph.13849. PubMed DOI PMC
Pontearso M, Slepicka J, Bhattacharyya A, Spicarova D, Palecek J. Dual effect of anandamide on spinal nociceptive transmission in control and inflammatory conditions. Biomed Pharmacother. 2024;173:116369. doi: 10.1016/j.biopha.2024.116369. PubMed DOI
Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202. doi: 10.1124/pr.54.2.161. PubMed DOI
Lu HC, Mackie K. An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016;79:516–525. doi: 10.1016/j.biopsych.2015.07.028. PubMed DOI PMC
Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders. Dialogues Clin Neurosci. 2020;22:259–269. doi: 10.31887/DCNS.2020.22.3/vdimarzo. PubMed DOI PMC
Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16:9–29. doi: 10.1038/s41582-019-0284-z. PubMed DOI
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology. 2018;43:52–79. doi: 10.1038/npp.2017.204. PubMed DOI PMC
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949. doi: 10.1126/science.1470919. PubMed DOI
Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, Axelrod J, Nguyen DN, et al. Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett. 1996;393:231–235. doi: 10.1016/0014-5793(96)00891-5. PubMed DOI
Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–1112. doi: 10.1038/nature03658. PubMed DOI
Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A. 2005;102:18620–18625. doi: 10.1073/pnas.0509591102. PubMed DOI PMC
Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9:76–81. doi: 10.1038/nm803. PubMed DOI
Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400:452–457. doi: 10.1038/22761. PubMed DOI
Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1) Br J Pharmacol. 2000;129:227–230. doi: 10.1038/sj.bjp.0703050. PubMed DOI PMC
Chemin J, Nargeot J, Lory P. Chemical determinants involved in anandamide-induced inhibition of T-type calcium channels. J Biol Chem. 2007;282:2314–2323. doi: 10.1074/jbc.M610033200. PubMed DOI
Kim HI, Kim TH, Shin YK, Lee CS, Park M, Song JH. Anandamide suppression of Na+ currents in rat dorsal root ganglion neurons. Brain Res. 2005;1062:39–47. doi: 10.1016/j.brainres.2005.09.004. PubMed DOI
O’Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol. 2007;152:576–582. doi: 10.1038/sj.bjp.0707423. PubMed DOI PMC
Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Sata T. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg. 2014;118:554–562. doi: 10.1213/ANE.0000000000000070. PubMed DOI
Sun Y, Alexander SP, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol. 2007;152:734–743. doi: 10.1038/sj.bjp.0707478. PubMed DOI PMC
Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372:686–691. doi: 10.1038/372686a0. PubMed DOI
Vellani V, Petrosino S, De Petrocellis L, Valenti M, Prandini M, Magherini PC, McNaughton PA, Di Marzo V. Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology. 2008;55:1274–1279. doi: 10.1016/j.neuropharm.2008.01.010. PubMed DOI
Ogura Y, Parsons WH, Kamat SS, Cravatt BF. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat Chem Biol. 2016;12:669–671. doi: 10.1038/nchembio.2127. PubMed DOI PMC
Astarita G, Ahmed F, Piomelli D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J Lipid Res. 2008;49:48–57. doi: 10.1194/jlr.M700354-JLR200. PubMed DOI
Jin XH, Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J Biol Chem. 2007;282:3614–3623. doi: 10.1074/jbc.M606369200. PubMed DOI
Tsuboi K, Uyama T, Okamoto Y, Ueda N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen. 2018;38:28. doi: 10.1186/s41232-018-0086-5. PubMed DOI PMC
Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–5305. doi: 10.1074/jbc.M306642200. PubMed DOI
Varga A, Jenes A, Marczylo TH, Sousa-Valente J, Chen J, Austin J, Selvarajah S, et al. Anandamide produced by Ca(2+)-insensitive enzymes induces excitation in primary sensory neurons. Pflugers Arch. 2014;466:1421–1435. doi: 10.1007/s00424-013-1360-7. PubMed DOI
Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–87. doi: 10.1038/384083a0. PubMed DOI
Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140:790–801. doi: 10.1038/sj.bjp.0705467. PubMed DOI PMC
Spicarova D, Palecek J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol. 2009;102:234–243. doi: 10.1152/jn.00024.2009. PubMed DOI
van der Stelt M, Trevisani M, Vellani V, De Petrocellis L, Schiano Moriello A, Campi B, McNaughton P, et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 2005;24:3026–3037. doi: 10.1038/sj.emboj.7600784. PubMed DOI PMC
Goncalves Dos Santos G, Li R, Ng MPE, Lemes JBP, Vieira WF, Nagy I, Tambeli CH, Parada CA. CB1 receptor-dependent desensitisation of TRPV1 channels contributes to the analgesic effect of dipyrone in sensitised primary sensory neurons. Br J Pharmacol. 2020;177:4615–4626. doi: 10.1111/bph.15170. PubMed DOI PMC
Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW., 4th Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) Proc Natl Acad Sci U S A. 2003;100:12480–12485. doi: 10.1073/pnas.2032100100. PubMed DOI PMC
Evans RM, Scott RH, Ross RA. Multiple actions of anandamide on neonatal rat cultured sensory neurones. Br J Pharmacol. 2004;141:1223–1233. doi: 10.1038/sj.bjp.0705723. PubMed DOI PMC
Khasabova IA, Simone DA, Seybold VS. Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats. Neuroscience. 2002;115:613–625. doi: 10.1016/S0306-4522(02)00449-9. PubMed DOI
Farquhar-Smith WP, Egertova M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR. Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci. 2000;15:510–521. doi: 10.1006/mcne.2000.0844. PubMed DOI
Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience. 2000;100:685–688. doi: 10.1016/S0306-4522(00)00389-4. PubMed DOI
Binzen U, Greffrath W, Hennessy S, Bausen M, Saaler-Reinhardt S, Treede RD. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience. 2006;142:527–539. doi: 10.1016/j.neuroscience.2006.06.020. PubMed DOI
Hermann H, De Petrocellis L, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V. Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci. 2003;60:607–616. doi: 10.1007/s000180300052. PubMed DOI PMC
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, et al. OptoPI3K, genetic code expansion, and click chemistry reveal mechanisms underlying reciprocal regulation between TRPV1 and PI3K. bioRxiv: the preprint server for biology. 2023 doi: 10.7554/eLife.91012.1. DOI
Li T, Wang G, Hui VCC, Saad D, de Sousa Valente J, La Montanara P, Nagy I. TRPV1 feed-forward sensitisation depends on COX2 upregulation in primary sensory neurons. Sci Rep. 2021;11:3514. doi: 10.1038/s41598-021-82829-6. PubMed DOI PMC
Spicarova D, Nerandzic V, Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res. 2014;63(Suppl 1):S225–S236. doi: 10.33549/physiolres.932713. PubMed DOI
Joseph J, Qu L, Wang S, Kim M, Bennett D, Ro J, Caterina MJ, Chung MK. Phosphorylation of TRPV1 S801 Contributes to Modality-Specific Hyperalgesia in Mice. J Neurosci. 2019;39:9954–9966. doi: 10.1523/JNEUROSCI.1064-19.2019. PubMed DOI PMC
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology. 2019;146:163–174. doi: 10.1016/j.neuropharm.2018.11.027. PubMed DOI
Koivisto AP, Belvisi MG, Gaudet R, Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov. 2022;21:41–59. doi: 10.1038/s41573-021-00268-4. PubMed DOI PMC
Fioravanti B, De Felice M, Stucky CL, Medler KA, Luo MC, Gardell LR, Ibrahim M, et al. Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci. 2008;28:11593–11602. doi: 10.1523/JNEUROSCI.3322-08.2008. PubMed DOI PMC
Chen J, Varga A, Selvarajah S, Jenes A, Dienes B, Sousa-Valente J, Kulik A, et al. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk. Sci Rep. 2016;6:33307. doi: 10.1038/srep33307. PubMed DOI PMC
Fischbach T, Greffrath W, Nawrath H, Treede RD. Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive drg neurons of rats. J Neurophysiol. 2007;98:929–938. doi: 10.1152/jn.01096.2006. PubMed DOI
Mahmud A, Santha P, Paule CC, Nagy I. Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. Neuroscience. 2009;162:1202–1211. doi: 10.1016/j.neuroscience.2009.05.024. PubMed DOI
Tognetto M, Amadesi S, Harrison S, Creminon C, Trevisani M, Carreras M, Matera M, et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J Neurosci. 2001;21:1104–1109. doi: 10.1523/JNEUROSCI.21-04-01104.2001. PubMed DOI PMC
Lever IJ, Malcangio M. CB(1) receptor antagonist SR141716A increases capsaicin-evoked release of Substance P from the adult mouse spinal cord. Br J Pharmacol. 2002;135:21–24. doi: 10.1038/sj.bjp.0704506. PubMed DOI PMC
Bogdan DM, Studholme K, DiBua A, Gordon C, Kanjiya MP, Yu M, Puopolo M, Kaczocha M. FABP5 deletion in nociceptors augments endocannabinoid signaling and suppresses TRPV1 sensitization and inflammatory pain. Sci Rep. 2022;12:9241. doi: 10.1038/s41598-022-13284-0. PubMed DOI PMC
Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–6561. doi: 10.1523/JNEUROSCI.15-10-06552.1995. PubMed DOI PMC
Mackie K. Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes (Lond) 2006;30(Suppl 1):S19–S23. doi: 10.1038/sj.ijo.0803273. PubMed DOI
Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, Cullinan GJ, et al. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther. 1998;284:291–297. PubMed
Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem. 1998;71:1525–1534. doi: 10.1046/j.1471-4159.1998.71041525.x. PubMed DOI
Baccei ML, Bardoni R, Fitzgerald M. Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J Physiol. 2003;549:231–242. doi: 10.1113/jphysiol.2003.040451. PubMed DOI PMC
Yang K, Kumamoto E, Furue H, Li YQ, Yoshimura M. Action of capsaicin on dorsal root-evoked synaptic transmission to substantia gelatinosa neurons in adult rat spinal cord slices. Brain Res. 1999;830:268–273. doi: 10.1016/S0006-8993(99)01408-0. PubMed DOI
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. PubMed DOI
Kelly S, Chapman V. Spinal administration of capsazepine inhibits noxious evoked responses of dorsal horn neurons in non-inflamed and carrageenan inflamed rats. Brain Res. 2002;935:103–108. doi: 10.1016/S0006-8993(02)02552-0. PubMed DOI
Morisset V, Urban L. Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol. 2001;86:40–48. doi: 10.1152/jn.2001.86.1.40. PubMed DOI
Luo C, Kumamoto E, Furue H, Chen J, Yoshimura M. Anandamide inhibits excitatory transmission to rat substantia gelatinosa neurones in a manner different from that of capsaicin. Neurosci Lett. 2002;321:17–20. doi: 10.1016/S0304-3940(01)02471-5. PubMed DOI
Morisset V, Ahluwalia J, Nagy I, Urban L. Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. Eur J Pharmacol. 2001;429:93–100. doi: 10.1016/S0014-2999(01)01309-7. PubMed DOI
Spicarova D, Nerandzic V, Muzik D, Pontearso M, Bhattacharyya A, Nagy I, Palecek J. Inhibition of synaptic transmission by anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front Mol Neurosci. 2023;16:1188503. doi: 10.3389/fnmol.2023.1188503. PubMed DOI PMC
Nyilas R, Gregg LC, Mackie K, Watanabe M, Zimmer A, Hohmann AG, Katona I. Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia. Eur Neurosci. 2009;29:1964–1978. doi: 10.1111/j.1460-9568.2009.06751.x. PubMed DOI PMC
Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410:588–592. doi: 10.1038/35069076. PubMed DOI
Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron. 2001;29:717–727. doi: 10.1016/S0896-6273(01)00246-X. PubMed DOI
Kato A, Punnakkal P, Pernia-Andrade AJ, von Schoultz C, Sharopov S, Nyilas R, Katona I, Zeilhofer HU. Endocannabinoid-dependent plasticity at spinal nociceptor synapses. J Physiol. 2012;590:4717–4733. doi: 10.1113/jphysiol.2012.234229. PubMed DOI PMC
Pernia-Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF, Watanabe M, et al. Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science. 2009;325:760–764. doi: 10.1126/science.1171870. PubMed DOI PMC
Veress G, Meszar Z, Muszil D, Avelino A, Matesz K, Mackie K, Nagy I. Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct Funct. 2013;218:733–750. doi: 10.1007/s00429-012-0425-2. PubMed DOI PMC
Hegyi Z, Kis G, Hollo K, Ledent C, Antal M. Neuronal and glial localization of the cannabinoid-1 receptor in the superficial spinal dorsal horn of the rodent spinal cord. Eur J Neurosci. 2009;30:251–262. doi: 10.1111/j.1460-9568.2009.06816.x. PubMed DOI
Woodhams SG, Sagar DR, Burston JJ, Chapman V. The role of the endocannabinoid system in pain. Handb Exp Pharmacol. 2015;227:119–143. doi: 10.1007/978-3-662-46450-2_7. PubMed DOI
Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci. 2007;10:870–879. doi: 10.1038/nn1916. PubMed DOI PMC
Richardson JD, Aanonsen L, Hargreaves KM. SR 141716A, a cannabinoid receptor antagonist, produces hyperalgesia in untreated mice. Eur J Pharmacol. 1997;319:R3–4. doi: 10.1016/S0014-2999(96)00952-1. PubMed DOI
Chapman V. The cannabinoid CB1 receptor antagonist, SR141716A, selectively facilitates nociceptive responses of dorsal horn neurones in the rat. Br J Pharmacol. 1999;127:1765–1767. doi: 10.1038/sj.bjp.0702758. PubMed DOI PMC
Dogrul A, Gul H, Akar A, Yildiz O, Bilgin F, Guzeldemir E. Topical cannabinoid antinociception: synergy with spinal sites. Pain. 2003;105:11–16. doi: 10.1016/S0304-3959(03)00068-X. PubMed DOI
Harris J, Drew LJ, Chapman V. Spinal anandamide inhibits nociceptive transmission via cannabinoid receptor activation in vivo. Neuroreport. 2000;11:2817–2819. doi: 10.1097/00001756-200008210-00041. PubMed DOI
Martin WJ, Loo CM, Basbaum AI. Spinal cannabinoids are anti-allodynic in rats with persistent inflammation. Pain. 1999;82:199–205. doi: 10.1016/S0304-3959(99)00045-7. PubMed DOI
Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James I. The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain. 2001;92:91–100. doi: 10.1016/S0304-3959(00)00474-7. PubMed DOI
Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology. 2007;52:415–422. doi: 10.1016/j.neuropharm.2006.08.011. PubMed DOI
Richardson JD, Aanonsen L, Hargreaves KM. Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol. 1998;345:145–153. doi: 10.1016/S0014-2999(97)01621-X. PubMed DOI
Starowicz K, Makuch W, Osikowicz M, Piscitelli F, Petrosino S, Di Marzo V, Przewlocka B. Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology. 2012;62:1746–1755. doi: 10.1016/j.neuropharm.2011.11.021. PubMed DOI
Starowicz K, Makuch W, Korostynski M, Malek N, Slezak M, Zychowska M, Petrosino S, et al. Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism. PLoS One. 2013;8:e60040. doi: 10.1371/journal.pone.0060040. PubMed DOI PMC
Serpell M, Ratcliffe S, Hovorka J, Schofield M, Taylor L, Lauder H, Ehler E. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain. 2014;18:999–1012. doi: 10.1002/j.1532-2149.2013.00445.x. PubMed DOI
Perras C. Sativex for the management of multiple sclerosis symptoms. Issues Emerg Health Technol. 2005;(72):1–4. PubMed
Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A. 2001;98:9371–9376. doi: 10.1073/pnas.161191698. PubMed DOI PMC
Jhaveri MD, Richardson D, Kendall DA, Barrett DA, Chapman V. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci. 2006;26:13318–13327. doi: 10.1523/JNEUROSCI.3326-06.2006. PubMed DOI PMC
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17:623–639. doi: 10.1038/nrd.2018.115. PubMed DOI
Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain. 2012;153:1837–1846. doi: 10.1016/j.pain.2012.04.020. PubMed DOI
Mallet C, Dubray C, Duale C. FAAH inhibitors in the limelight, but regrettably. Int J Clin Pharmacol Ther. 2016;54:498–501. doi: 10.5414/CP202687. PubMed DOI PMC
van Esbroeck ACM, Janssen APA, Cognetta AB, 3rd, Ogasawara D, Shpak G, van der Kroeg M, Kantae V, et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10–2474. Science. 2017;356:1084–1087. doi: 10.1126/science.aaf7497. PubMed DOI PMC
Rocha JF, Santos A, Gama H, Moser P, Falcao A, Pressman P, Wallace Hayes A, Soares-da-Silva P. Safety, Tolerability, and Pharmacokinetics of FAAH Inhibitor BIA 10–2474: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Volunteers. Clin Pharmacol Ther. 2022;111:391–403. doi: 10.1002/cpt.2290. PubMed DOI PMC
Kalliomaki J, Annas P, Huizar K, Clarke C, Zettergren A, Karlsten R, Segerdahl M. Evaluation of the analgesic efficacy and psychoactive effects of AZD1940, a novel peripherally acting cannabinoid agonist, in human capsaicin-induced pain and hyperalgesia. Clin Exp Pharmacol Physiol. 2013;40:212–218. doi: 10.1111/1440-1681.12051. PubMed DOI
Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J. 2013;280:1918–1943. doi: 10.1111/febs.12260. PubMed DOI PMC
Milligan AL, Szabo-Pardi TA, Burton MD. Cannabinoid Receptor Type 1 and Its Role as an Analgesic: An Opioid Alternative? J Dual Diagn. 2020;16:106–119. doi: 10.1080/15504263.2019.1668100. PubMed DOI PMC