Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by N-arachidonoylphosphatidylethanolamine
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28476070
PubMed Central
PMC5980568
DOI
10.1111/bph.13849
Knihovny.cz E-zdroje
- MeSH
- buňky zadních rohů míšních účinky léků metabolismus MeSH
- fosfatidylethanolaminy chemická syntéza chemie farmakologie MeSH
- hmotnostní spektrometrie MeSH
- karagenan MeSH
- krysa rodu Rattus MeSH
- mícha účinky léků metabolismus MeSH
- nervový přenos účinky léků MeSH
- potkani Wistar MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zánět chemicky indukované metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylethanolaminy MeSH
- karagenan MeSH
BACKGROUND AND PURPOSE: Endocannabinoids play an important role in modulating spinal nociceptive signalling, crucial for the development of pain. The cannabinoid CB1 receptor and the TRPV1 cation channel are both activated by the endocannabinoid anandamide, a product of biosynthesis from the endogenous lipid precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE). Here, we report CB1 receptor- and TRPV1-mediated effects of 20:4-NAPE on spinal synaptic transmission in control and inflammatory conditions. EXPERIMENTAL APPROACH: Spontaneous (sEPSCs) and dorsal root stimulation-evoked (eEPSCs) excitatory postsynaptic currents from superficial dorsal horn neurons in rat spinal cord slices were assessed. Peripheral inflammation was induced by carrageenan. Anandamide concentration was assessed by mass spectrometry. KEY RESULTS: Application of 20:4-NAPE increased anandamide concentration in vitro. 20:4-NAPE (20 μM) decreased sEPSCs frequency and eEPSCs amplitude in control and inflammatory conditions. The inhibitory effect of 20:4-NAPE was sensitive to CB1 receptor antagonist PF514273 (0.2 μM) in both conditions, but to the TRPV1 antagonist SB366791 (10 μM) only after inflammation. After inflammation, 20:4-NAPE increased sEPSCs frequency in the presence of PF514273 and this increase was blocked by SB366791. CONCLUSIONS AND IMPLICATIONS: While 20:4-NAPE treatment inhibited the excitatory synaptic transmission in both naive and inflammatory conditions, peripheral inflammation altered the underlying mechanisms. Our data indicate that 20:4-NAPE application induced mainly CB1 receptor-mediated inhibitory effects in naive animals while TRPV1-mediated mechanisms were also involved after inflammation. Increasing anandamide levels for analgesic purposes by applying substrate for its local synthesis may be more effective than systemic anandamide application or inhibition of its degradation. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Zobrazit více v PubMed
Ahluwalia J, Urban L, Bevan S, Nagy I (2003). Anandamide regulates neuropeptide release from capsaicin‐sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17: 2611–2618. PubMed
Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000). Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100: 685–688. PubMed
Alexander SPH, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE et al. (2015a). The Concise Guide to PHARMACOLOGY 2015/16: G protein‐coupled receptors. Br J Pharmacol 172: 5744–5869. PubMed PMC
Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al. (2015b). The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. Br J Pharmacol 172: 6024–6109. PubMed PMC
Alexander SPH, Catterall WA, Kelly E, Marrion N, Peters JA, Benson HE et al. (2015c). The Concise Guide to PHARMACOLOGY 2015/16: Voltage‐gated ion channels. Br J Pharmacol 172: 5904–5941. PubMed PMC
Alexander SPH, Peters JA, Kelly E, Marrion N, Benson HE, Faccenda E et al. (2015d). The Concise Guide to PHARMACOLOGY 2015/16: Ligand‐gated ion channels. Br J Pharmacol 172: 5870–5903. PubMed PMC
Alkaitis MS, Solorzano C, Landry RP, Piomelli D, DeLeo JA, Romero‐Sandoval EA (2010). Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain. PLoS One 5: e10891. PubMed PMC
Amaya F, Oh‐hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G et al. (2003). Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 963: 190–196. PubMed
Amaya F, Shimosato G, Kawasaki Y, Hashimoto S, Tanaka Y, Ji RR et al. (2006). Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist. Pain 124: 175–183. PubMed
Baccei ML, Bardoni R, Fitzgerald M (2003). Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J Physiol 549 (Pt 1): 231–242. PubMed PMC
Buczynski MW, Svensson CI, Dumlao DS, Fitzsimmons BL, Shim JH, Scherbart TJ et al. (2010). Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. J Neurochem 114: 981–993. PubMed PMC
Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K et al. (2004). Cultured rat microglial cells synthesize the endocannabinoid 2‐arachidonylglycerol, which increases proliferation via a CB2 receptor‐dependent mechanism. Mol Pharmacol 65: 999–1007. PubMed
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997). The capsaicin receptor: a heat‐activated ion channel in the pain pathway. Nature 389: 816–824. PubMed
Chemin J, Monteil A, Perez‐Reyes E, Nargeot J, Lory P (2001). Direct inhibition of T‐type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20: 7033–7040. PubMed PMC
Costa B, Bettoni I, Petrosino S, Comelli F, Giagnoni G, Di Marzo V (2010). The dual fatty acid amide hydrolase/TRPV1 blocker, N‐arachidonoyl‐serotonin, relieves carrageenan‐induced inflammation and hyperalgesia in mice. Pharmacological Res 61: 537–546. PubMed
Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA et al. (2015). Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172: 3461–3471. PubMed PMC
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949. PubMed
Dow RL, Carpino PA, Hadcock JR, Black SC, Iredale PA, DaSilva‐Jardine P et al. (2009). Discovery of 2‐(2‐chlorophenyl)‐3‐(4‐chlorophenyl)‐7‐(2,2‐difluoropropyl)‐6,7‐dihydro‐2H‐pyraz olo[3,4‐f][1,4]oxazepin‐8(5H)‐one (PF‐514273), a novel, bicyclic lactam‐based cannabinoid‐1 receptor antagonist for the treatment of obesity. J Med Chem 52: 2652–2655. PubMed
Farquhar‐Smith WP, Egertova M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR (2000). Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci 15: 510–521. PubMed
Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM et al. (2004). Identification and characterisation of SB‐366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46: 133–149. PubMed
Guo A, Vulchanova L, Wang J, Li X, Elde R (1999). Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11: 946–958. PubMed
Hegyi Z, Hollo K, Kis G, Mackie K, Antal M (2012). Differential distribution of diacylglycerol lipase‐alpha and N‐acylphosphatidylethanolamine‐specific phospholipase d immunoreactivity in the superficial spinal dorsal horn of rats. Glia 60: 1316–1329. PubMed PMC
Kanai Y, Nakazato E, Fujiuchi A, Hara T, Imai A (2005). Involvement of an increased spinal TRPV1 sensitization through its up‐regulation in mechanical allodynia of CCI rats. Neuropharmacology 49: 977–984. PubMed
Katona I, Freund TF (2008). Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14: 923–930. PubMed
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160: 1577–1579. PubMed PMC
Kim HI, Kim TH, Shin YK, Lee CS, Park M, Song JH (2005). Anandamide suppression of Na+ currents in rat dorsal root ganglion neurons. Brain Res 1062: 39–47. PubMed
Kim YH, Back SK, Davies AJ, Jeong H, Jo HJ, Chung G et al. (2012). TRPV1 in GABAergic interneurons mediates neuropathic mechanical allodynia and disinhibition of the nociceptive circuitry in the spinal cord. Neuron 74: 640–647. PubMed
Kwon SG, Roh DH, Yoon SY, Moon JY, Choi SR, Choi HS et al. (2014). Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan‐induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 79: 368–379. PubMed
Lappin SC, Randall AD, Gunthorpe MJ, Morisset V (2006). TRPV1 antagonist, SB‐366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur J Pharmacol 540: 73–81. PubMed
Lever IJ, Robinson M, Cibelli M, Paule C, Santha P, Yee L et al. (2009). Localization of the endocannabinoid‐degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 29: 3766–3780. PubMed PMC
Luo H, Cheng J, Han JS, Wan Y (2004). Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund's adjuvant in rats. Neuroreport 15: 655–658. PubMed
Malek N, Kucharczyk M, Starowicz K (2014). Alterations in the anandamide metabolism in the development of neuropathic pain. Biomed Res Int 2014: 686908. PubMed PMC
Mallet C, Dubray C, Duale C (2016). FAAH inhibitors in the limelight, but regrettably. Int J Clin Pharmacol Ther 54: 498–501. PubMed PMC
McGrath JC, Lilley E (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172: 3189–3193. PubMed PMC
Morisset V, Ahluwalia J, Nagy I, Urban L (2001). Possible mechanisms of cannabinoid‐induced antinociception in the spinal cord. Eur J Pharmacol 429: 93–100. PubMed
Morisset V, Urban L (2001). Cannabinoid‐induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol 86: 40–48. PubMed
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP (2014). Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type‐1 ion channel. Prog Drug Res 68: 39–76. PubMed
Nyilas R, Gregg LC, Mackie K, Watanabe M, Zimmer A, Hohmann AG et al. (2009). Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia. Eur J Neurosci 29: 1964–1978. PubMed PMC
Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y et al. (2014). The endocannabinoid anandamide inhibits voltage‐gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg 118: 554–562. PubMed
O'Sullivan SE (2007). Cannabinoids go nuclear: evidence for activation of peroxisome proliferator‐activated receptors. Br J Pharmacol 152: 576–582. PubMed PMC
Park CK, Lu N, Xu ZZ, Liu T, Serhan CN, Ji RR (2011). Resolving TRPV1‐ and TNF‐alpha‐mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci 31: 15072–15085. PubMed PMC
Pernia‐Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF et al. (2009). Spinal endocannabinoids and CB1 receptors mediate C‐fiber‐induced heterosynaptic pain sensitization. Science 325: 760–764. PubMed PMC
Ren K, Dubner R (1999). Inflammatory Models of Pain and Hyperalgesia. ILAR J 40: 111–118. PubMed
Richardson JD, Kilo S, Hargreaves KM (1998). Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75: 111–119. PubMed
Snider NT, Walker VJ, Hollenberg PF (2010). Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 62: 136–154. PubMed PMC
Sousa‐Valente J, Andreou AP, Urban L, Nagy I (2014a). Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 171: 2508–2527. PubMed PMC
Sousa‐Valente J, Varga A, Ananthan K, Khajuria A, Nagy I (2014b). Anandamide in primary sensory neurons: too much of a good thing? Eur J Neurosci 39: 409–418. PubMed
Sousa‐Valente J, Varga V, Torres Perez JVT, Jenes A, Wahba J, Mackie K et al. (2017). Inflammation of peripheral tissues and injury to peripheral nerves induce diferring effects in the expression of the calcium‐sensitive anandamide‐synthesising enzyme and related molecules in rat primary sensory neurons. J Comp Neurol 525: 1778–1796. PubMed
Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH et al. (2016). The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucl Acids Res 44 (Database Issue): D1054–D1068. PubMed PMC
Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J (2014a). TRPV1 receptor inhibition decreases CCL2‐induced hyperalgesia. Neuropharmacology 81: 75–84. PubMed
Spicarova D, Nerandzic V, Palecek J (2011). Modulation of spinal cord synaptic activity by tumor necrosis factor alpha in a model of peripheral neuropathy. J Neuroinflammation 8: 177. PubMed PMC
Spicarova D, Nerandzic V, Palecek J (2014b). Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res 63 (Suppl 1): S225–S236. PubMed
Spicarova D, Palecek J (2009). The role of the TRPV1 endogenous agonist N‐Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol 102: 234–243. PubMed
Spicarova D, Palecek J (2010). Modulation of AMPA excitatory postsynaptic currents in the spinal cord dorsal horn neurons by insulin. Neuroscience 166: 305–311. PubMed
van der Stelt M, Trevisani M, Vellani V, De Petrocellis L, Schiano Moriello A, Campi B et al. (2005). Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 24: 3026–3037. PubMed PMC
Tognetto M, Amadesi S, Harrison S, Creminon C, Trevisani M, Carreras M et al. (2001). Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor‐1 activation. J Neurosci 21: 1104–1109. PubMed PMC
Ueda N, Tsuboi K, Uyama T (2013). Metabolism of endocannabinoids and related N‐acylethanolamines: canonical and alternative pathways. FEBS J 280: 1874–1894. PubMed
Varga A, Jenes A, Marczylo TH, Sousa‐Valente J, Chen J, Austin J et al. (2014). Anandamide produced by Ca(2+)‐insensitive enzymes induces excitation in primary sensory neurons. Pflugers Archiv 466: 1421–1435. PubMed
Vellani V, Petrosino S, De Petrocellis L, Valenti M, Prandini M, Magherini PC et al. (2008). Functional lipidomics. Calcium‐independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology 55: 1274–1279. PubMed
Veress G, Meszar Z, Muszil D, Avelino A, Matesz K, Mackie K et al. (2013). Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct Funct 218: 733–750. PubMed PMC
Wang J, Okamoto Y, Morishita J, Tsuboi K, Miyatake A, Ueda N (2006). Functional analysis of the purified anandamide‐generating phospholipase D as a member of the metallo‐beta‐lactamase family. J Biol Chem 281: 12325–12335. PubMed
Wang J, Ueda N (2009). Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat 89: 112–119. PubMed
Wu ZZ, Chen SR, Pan HL (2005). Transient receptor potential vanilloid type 1 activation down‐regulates voltage‐gated calcium channels through calcium‐dependent calcineurin in sensory neurons. J Biol Chem 280: 18142–18151. PubMed
Yang K, Kumamoto E, Furue H, Li YQ, Yoshimura M (1999). Action of capsaicin on dorsal root‐evoked synaptic transmission to substantia gelatinosa neurons in adult rat spinal cord slices. Brain Res 830: 268–273. PubMed
Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V et al. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400: 452–457. PubMed
Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level