Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P30 CA051008
NCI NIH HHS - United States
R01 CA135069
NCI NIH HHS - United States
U01 CA230692
NCI NIH HHS - United States
R01 CA238455
NCI NIH HHS - United States
S10 OD023557
NIH HHS - United States
PubMed
34857845
PubMed Central
PMC8639754
DOI
10.1038/s41598-021-02838-3
PII: 10.1038/s41598-021-02838-3
Knihovny.cz E-resources
- MeSH
- Biomarkers metabolism MeSH
- Chromatography, Liquid methods MeSH
- Fucose metabolism MeSH
- Glycopeptides metabolism MeSH
- Glycoside Hydrolases * MeSH
- Glycosylation MeSH
- Liver Cirrhosis diagnosis metabolism MeSH
- Humans MeSH
- Polysaccharides metabolism MeSH
- Tandem Mass Spectrometry methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Biomarkers MeSH
- Fucose MeSH
- Glycopeptides MeSH
- Glycoside Hydrolases * MeSH
- Polysaccharides MeSH
Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
See more in PubMed
Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–2376. doi: 10.1126/science.291.5512.2370. PubMed DOI
Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. PubMed DOI
Cummings RD, Pierce JM. The challenge and promise of glycomics. Chem. Biol. 2014;21(1):1–15. doi: 10.1016/j.chembiol.2013.12.010. PubMed DOI PMC
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol. 2014;21(1):16–37. doi: 10.1016/j.chembiol.2013.09.010. PubMed DOI PMC
Varki, A., & Gagneux, P. Biological Functions of Glycans. 2015, 77–88.
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology. 2017;27(7):601–618. doi: 10.1093/glycob/cwx034. PubMed DOI PMC
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019;15(6):346–366. doi: 10.1038/s41581-019-0129-4. PubMed DOI PMC
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking fucosylation: From cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 2018;25(5):499–512. doi: 10.1016/j.chembiol.2018.02.005. PubMed DOI
Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N. The alpha1-6-fucosyltransferase gene and its biological significance. Biochim. Biophys. Acta. 1999;1473(1):9–20. doi: 10.1016/S0304-4165(99)00166-X. PubMed DOI
Breton C, Oriol R, Imberty A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology. 1998;8(1):87–94. doi: 10.1093/glycob/8.1.87. PubMed DOI
Balog CI, Stavenhagen K, Fung WL, Koeleman CA, McDonnell LA, Verhoeven A, Mesker WE, Tollenaar RA, Deelder AM, Wuhrer M. N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol. Cell Proteomics. 2012;11(9):571–585. doi: 10.1074/mcp.M111.011601. PubMed DOI PMC
Chandler K, Goldman R. Glycoprotein disease markers and single protein-omics. Mol. Cell Proteomics. 2013;12(4):836–845. doi: 10.1074/mcp.R112.026930. PubMed DOI PMC
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: Cues from the eukaryotic kingdoms. Biol. Rev. Camb. Philos. Soc. 2019;94(6):2068–2100. doi: 10.1111/brv.12548. PubMed DOI
Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s) Methods Enzymol. 2006;417:11–22. doi: 10.1016/S0076-6879(06)17002-0. PubMed DOI
Ng BG, Xu G, Chandy N, Steyermark J, Shinde DN, Radtke K, Raymond K, Lebrilla CB, AlAsmari A, Suchy SF, Powis Z, Faqeih EA, Berry SA, Kronn DF, Freeze HH. Biallelic mutations in FUT8 cause a congenital disorder of glycosylation with defective fucosylation. Am. J. Hum. Genet. 2018;102(1):188–195. doi: 10.1016/j.ajhg.2017.12.009. PubMed DOI PMC
Ferrara, C., Stuart, F., Sondermann, P., Brunker, P., & Umana, P. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem.281 (8), 5032–5036 (2006). PubMed
Majewska, N. I., Tejada, M. L., Betenbaugh, M. J., & Agarwal, N. N-glycosylation of IgG and IgG-like recombinant therapeutic proteins: Why is it important and how can we control it? Annu. Rev. Chem. Biomol. Eng (2020). PubMed
Dekkers, G., Treffers, L., Plomp, R., Bentlage, A. E. H., de, B. M., Koeleman, C. A. M., Lissenberg-Thunnissen, S. N., Visser, R., Brouwer, M., Mok, J. Y., Matlung, H., van den Berg, T. K., van Esch, W. J. E., Kuijpers, T. W., Wouters, D., Rispens, T., Wuhrer, M., & Vidarsson, G. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol.2017,8, 877. PubMed PMC
Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J. Mol. Biol. 2004;336(5):1239–1249. doi: 10.1016/j.jmb.2004.01.007. PubMed DOI
Liang W, Mao S, Sun S, Li M, Li Z, Yu R, Ma T, Gu J, Zhang J, Taniguchi N, Li W. Core fucosylation of the T cell receptor is required for T cell activation. Front Immunol. 2018;9:78. doi: 10.3389/fimmu.2018.00078. PubMed DOI PMC
Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 2017;20(5):1017–1028. doi: 10.1016/j.celrep.2017.07.027. PubMed DOI
Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S, Darvishian F, Castillo M, Ueberheide B, Osman I, Fenyo D, Mahal LK, Hernando E. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 2017;31(6):804–819. doi: 10.1016/j.ccell.2017.05.007. PubMed DOI PMC
Wang Y, Fukuda T, Isaji T, Lu J, Im S, Hang Q, Gu W, Hou S, Ohtsubo K, Gu J. Loss of alpha1,6-fucosyltransferase inhibits chemical-induced hepatocellular carcinoma and tumorigenesis by down-regulating several cell signaling pathways. FASEB J. 2015;29(8):3217–3227. doi: 10.1096/fj.15-270710. PubMed DOI
Liu, Y. C., Yen, H. Y., Chen, C. Y., Chen, C. H., Cheng, P. F., Juan, Y. H., Chen, C. H., Khoo, K. H., Yu, C. J., Yang, P. C., Hsu, T. L., & Wong, C. H. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl. Acad. Sci. USA108 (28), 11332–11337 (2011). PubMed PMC
Honma R, Kinoshita I, Miyoshi E, Tomaru U, Matsuno Y, Shimizu Y, Takeuchi S, Kobayashi Y, Kaga K, Taniguchi N, Dosaka-Akita H. Expression of fucosyltransferase 8 is associated with an unfavorable clinical outcome in non-small cell lung cancers. Oncology. 2015;88(5):298–308. doi: 10.1159/000369495. PubMed DOI
Fujii H, Shinzaki S, Iijima H, Wakamatsu K, Iwamoto C, Sobajima T, Kuwahara R, Hiyama S, Hayashi Y, Takamatsu S, Uozumi N, Kamada Y, Tsujii M, Taniguchi N, Takehara T, Miyoshi E. Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice, is increased in patients with inflammatory bowel disease. Gastroenterology. 2016;150(7):1620–1632. doi: 10.1053/j.gastro.2016.03.002. PubMed DOI
Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, Taubenberger JK, Ahmed R, Ravetch JV. IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science. 2017;355(6323):395–398. doi: 10.1126/science.aai8128. PubMed DOI PMC
Jia W, Lu Z, Fu Y, Wang HP, Wang LH, Chi H, Yuan ZF, Zheng ZB, Song LN, Han HH, Liang YM, Wang JL, Cai Y, Zhang YK, Deng YL, Ying WT, He SM, Qian XH. A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol. Cell Proteomics. 2009;8(5):913–923. doi: 10.1074/mcp.M800504-MCP200. PubMed DOI PMC
Cao Q, Zhao X, Zhao Q, Lv X, Ma C, Li X, Zhao Y, Peng B, Ying W, Qian X. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Anal. Chem. 2014;86(14):6804–6811. doi: 10.1021/ac501154a. PubMed DOI
Yin H, Tan Z, Wu J, Zhu J, Shedden KA, Marrero J, Lubman DM. Mass-selected site-specific core-fucosylation of serum proteins in hepatocellular carcinoma. J. Proteome. Res. 2015;14(11):4876–4884. doi: 10.1021/acs.jproteome.5b00718. PubMed DOI PMC
Ma C, Zhang Q, Qu J, Zhao X, Li X, Liu Y, Wang PG. A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. J. Proteomics. 2015;114:61–70. doi: 10.1016/j.jprot.2014.09.001. PubMed DOI
Zhou J, Yang W, Hu Y, Hoti N, Liu Y, Shah P, Sun S, Clark D, Thomas S, Zhang H. Site-specific fucosylation analysis identifying glycoproteins associated with aggressive prostate cancer cell lines using tandem affinity enrichments of intact glycopeptides followed by mass spectrometry. Anal. Chem. 2017;89(14):7623–7630. doi: 10.1021/acs.analchem.7b01493. PubMed DOI PMC
Ma J, Sanda M, Wei R, Zhang L, Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J. Proteomics. 2018;189:67–74. doi: 10.1016/j.jprot.2018.02.003. PubMed DOI PMC
Yuan W, Benicky J, Wei R, Goldman R, Sanda M. Quantitative analysis of sex-hormone-binding globulin glycosylation in liver diseases by liquid chromatography-mass spectrometry parallel reaction monitoring. J. Proteome. Res. 2018;17(8):2755–2766. doi: 10.1021/acs.jproteome.8b00201. PubMed DOI PMC
Sanda M, Zhang L, Edwards NJ, Goldman R. Site-specific analysis of changes in the glycosylation of proteins in liver cirrhosis using data-independent workflow with soft fragmentation. Anal. Bioanal. Chem. 2016;409(2):619–627. doi: 10.1007/s00216-016-0041-8. PubMed DOI PMC
Kozlik P, Goldman R, Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410(20):5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC
Sanda M, Goldman R. Data independent analysis of IgG glycoforms in samples of unfractionated human plasma. Anal. Chem. 2016;88(20):10118–10125. doi: 10.1021/acs.analchem.6b02554. PubMed DOI PMC
Kozlik P, Goldman R, Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38(17):2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC
Acs A, Ozohanics O, Vekey K, Drahos L, Turiak L. Distinguishing core and antenna fucosylated glycopeptides based on low-energy tandem mass spectra. Anal. Chem. 2018;90(21):12776–12782. doi: 10.1021/acs.analchem.8b03140. PubMed DOI
Grieco A, Matera A, Di RP, Marcoccia S, Giancaterini A, Alfei B, Addolorato G, Varlese F, Gasbarrini G. Plasma levels of fibronectin in patients with chronic viral and alcoholic liver disease. Hepatogastroenterology. 1998;45(23):1731–1736. PubMed
Niu, L., Geyer, P. E., Wewer Albrechtsen, N. J., Gluud, L. L., Santos, A., Doll, S., Treit, P. V., Holst, J. J., Knop, F. K., Vilsboll, T., Junker, A., Sachs, S., Stemmer, K., Muller, T. D., Tschop, M. H., Hofmann, S. M., & Mann, M. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol. Syst. Biol.15 (3), e8793 (2019). PubMed PMC
Gangadharan B, Antrobus R, Dwek RA, Zitzmann N. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Physiol. Rev. 2007;53(10):1792–1799. PubMed
Benicky J, Sanda M, Pompach P, Wu J, Goldman R. Quantification of fucosylated hemopexin and complement factor h in plasma of patients with liver disease. Anal. Chem. 2014;86(21):10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC
Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics. Clin. Appl. 2015;9(1–2):17–32. doi: 10.1002/prca.201400152. PubMed DOI PMC
Sanda M, Pompach P, Brnakova Z, Wu J, Makambi K, Goldman R. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease. Mol. Cell Proteomics. 2013;12(5):1294–1305. doi: 10.1074/mcp.M112.023325. PubMed DOI PMC
Brockhausen I, Möller G, Merz G, Adermann K, Paulsen H. Control of mucin synthesis: The peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan Core 1 UDPgalactose:N-acetyl-d-galactosaminyl-R β3-galactosaminyltransferase. Biochemistry. 1990;29:10206–10212. doi: 10.1021/bi00496a008. PubMed DOI