• This record comes from PubMed

Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS

. 2021 Dec 02 ; 11 (1) : 23273. [epub] 20211202

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P30 CA051008 NCI NIH HHS - United States
R01 CA135069 NCI NIH HHS - United States
U01 CA230692 NCI NIH HHS - United States
R01 CA238455 NCI NIH HHS - United States
S10 OD023557 NIH HHS - United States

Links

PubMed 34857845
PubMed Central PMC8639754
DOI 10.1038/s41598-021-02838-3
PII: 10.1038/s41598-021-02838-3
Knihovny.cz E-resources

Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.

See more in PubMed

Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–2376. doi: 10.1126/science.291.5512.2370. PubMed DOI

Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. PubMed DOI

Cummings RD, Pierce JM. The challenge and promise of glycomics. Chem. Biol. 2014;21(1):1–15. doi: 10.1016/j.chembiol.2013.12.010. PubMed DOI PMC

Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol. 2014;21(1):16–37. doi: 10.1016/j.chembiol.2013.09.010. PubMed DOI PMC

Varki, A., & Gagneux, P. Biological Functions of Glycans. 2015, 77–88.

Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology. 2017;27(7):601–618. doi: 10.1093/glycob/cwx034. PubMed DOI PMC

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019;15(6):346–366. doi: 10.1038/s41581-019-0129-4. PubMed DOI PMC

Li J, Hsu HC, Mountz JD, Allen JG. Unmasking fucosylation: From cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 2018;25(5):499–512. doi: 10.1016/j.chembiol.2018.02.005. PubMed DOI

Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N. The alpha1-6-fucosyltransferase gene and its biological significance. Biochim. Biophys. Acta. 1999;1473(1):9–20. doi: 10.1016/S0304-4165(99)00166-X. PubMed DOI

Breton C, Oriol R, Imberty A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology. 1998;8(1):87–94. doi: 10.1093/glycob/8.1.87. PubMed DOI

Balog CI, Stavenhagen K, Fung WL, Koeleman CA, McDonnell LA, Verhoeven A, Mesker WE, Tollenaar RA, Deelder AM, Wuhrer M. N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol. Cell Proteomics. 2012;11(9):571–585. doi: 10.1074/mcp.M111.011601. PubMed DOI PMC

Chandler K, Goldman R. Glycoprotein disease markers and single protein-omics. Mol. Cell Proteomics. 2013;12(4):836–845. doi: 10.1074/mcp.R112.026930. PubMed DOI PMC

Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: Cues from the eukaryotic kingdoms. Biol. Rev. Camb. Philos. Soc. 2019;94(6):2068–2100. doi: 10.1111/brv.12548. PubMed DOI

Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s) Methods Enzymol. 2006;417:11–22. doi: 10.1016/S0076-6879(06)17002-0. PubMed DOI

Ng BG, Xu G, Chandy N, Steyermark J, Shinde DN, Radtke K, Raymond K, Lebrilla CB, AlAsmari A, Suchy SF, Powis Z, Faqeih EA, Berry SA, Kronn DF, Freeze HH. Biallelic mutations in FUT8 cause a congenital disorder of glycosylation with defective fucosylation. Am. J. Hum. Genet. 2018;102(1):188–195. doi: 10.1016/j.ajhg.2017.12.009. PubMed DOI PMC

Ferrara, C., Stuart, F., Sondermann, P., Brunker, P., & Umana, P. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem.281 (8), 5032–5036 (2006). PubMed

Majewska, N. I., Tejada, M. L., Betenbaugh, M. J., & Agarwal, N. N-glycosylation of IgG and IgG-like recombinant therapeutic proteins: Why is it important and how can we control it? Annu. Rev. Chem. Biomol. Eng (2020). PubMed

Dekkers, G., Treffers, L., Plomp, R., Bentlage, A. E. H., de, B. M., Koeleman, C. A. M., Lissenberg-Thunnissen, S. N., Visser, R., Brouwer, M., Mok, J. Y., Matlung, H., van den Berg, T. K., van Esch, W. J. E., Kuijpers, T. W., Wouters, D., Rispens, T., Wuhrer, M., & Vidarsson, G. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol.2017,8, 877. PubMed PMC

Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J. Mol. Biol. 2004;336(5):1239–1249. doi: 10.1016/j.jmb.2004.01.007. PubMed DOI

Liang W, Mao S, Sun S, Li M, Li Z, Yu R, Ma T, Gu J, Zhang J, Taniguchi N, Li W. Core fucosylation of the T cell receptor is required for T cell activation. Front Immunol. 2018;9:78. doi: 10.3389/fimmu.2018.00078. PubMed DOI PMC

Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 2017;20(5):1017–1028. doi: 10.1016/j.celrep.2017.07.027. PubMed DOI

Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S, Darvishian F, Castillo M, Ueberheide B, Osman I, Fenyo D, Mahal LK, Hernando E. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 2017;31(6):804–819. doi: 10.1016/j.ccell.2017.05.007. PubMed DOI PMC

Wang Y, Fukuda T, Isaji T, Lu J, Im S, Hang Q, Gu W, Hou S, Ohtsubo K, Gu J. Loss of alpha1,6-fucosyltransferase inhibits chemical-induced hepatocellular carcinoma and tumorigenesis by down-regulating several cell signaling pathways. FASEB J. 2015;29(8):3217–3227. doi: 10.1096/fj.15-270710. PubMed DOI

Liu, Y. C., Yen, H. Y., Chen, C. Y., Chen, C. H., Cheng, P. F., Juan, Y. H., Chen, C. H., Khoo, K. H., Yu, C. J., Yang, P. C., Hsu, T. L., & Wong, C. H. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl. Acad. Sci. USA108 (28), 11332–11337 (2011). PubMed PMC

Honma R, Kinoshita I, Miyoshi E, Tomaru U, Matsuno Y, Shimizu Y, Takeuchi S, Kobayashi Y, Kaga K, Taniguchi N, Dosaka-Akita H. Expression of fucosyltransferase 8 is associated with an unfavorable clinical outcome in non-small cell lung cancers. Oncology. 2015;88(5):298–308. doi: 10.1159/000369495. PubMed DOI

Fujii H, Shinzaki S, Iijima H, Wakamatsu K, Iwamoto C, Sobajima T, Kuwahara R, Hiyama S, Hayashi Y, Takamatsu S, Uozumi N, Kamada Y, Tsujii M, Taniguchi N, Takehara T, Miyoshi E. Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice, is increased in patients with inflammatory bowel disease. Gastroenterology. 2016;150(7):1620–1632. doi: 10.1053/j.gastro.2016.03.002. PubMed DOI

Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, Taubenberger JK, Ahmed R, Ravetch JV. IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science. 2017;355(6323):395–398. doi: 10.1126/science.aai8128. PubMed DOI PMC

Jia W, Lu Z, Fu Y, Wang HP, Wang LH, Chi H, Yuan ZF, Zheng ZB, Song LN, Han HH, Liang YM, Wang JL, Cai Y, Zhang YK, Deng YL, Ying WT, He SM, Qian XH. A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol. Cell Proteomics. 2009;8(5):913–923. doi: 10.1074/mcp.M800504-MCP200. PubMed DOI PMC

Cao Q, Zhao X, Zhao Q, Lv X, Ma C, Li X, Zhao Y, Peng B, Ying W, Qian X. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Anal. Chem. 2014;86(14):6804–6811. doi: 10.1021/ac501154a. PubMed DOI

Yin H, Tan Z, Wu J, Zhu J, Shedden KA, Marrero J, Lubman DM. Mass-selected site-specific core-fucosylation of serum proteins in hepatocellular carcinoma. J. Proteome. Res. 2015;14(11):4876–4884. doi: 10.1021/acs.jproteome.5b00718. PubMed DOI PMC

Ma C, Zhang Q, Qu J, Zhao X, Li X, Liu Y, Wang PG. A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. J. Proteomics. 2015;114:61–70. doi: 10.1016/j.jprot.2014.09.001. PubMed DOI

Zhou J, Yang W, Hu Y, Hoti N, Liu Y, Shah P, Sun S, Clark D, Thomas S, Zhang H. Site-specific fucosylation analysis identifying glycoproteins associated with aggressive prostate cancer cell lines using tandem affinity enrichments of intact glycopeptides followed by mass spectrometry. Anal. Chem. 2017;89(14):7623–7630. doi: 10.1021/acs.analchem.7b01493. PubMed DOI PMC

Ma J, Sanda M, Wei R, Zhang L, Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J. Proteomics. 2018;189:67–74. doi: 10.1016/j.jprot.2018.02.003. PubMed DOI PMC

Yuan W, Benicky J, Wei R, Goldman R, Sanda M. Quantitative analysis of sex-hormone-binding globulin glycosylation in liver diseases by liquid chromatography-mass spectrometry parallel reaction monitoring. J. Proteome. Res. 2018;17(8):2755–2766. doi: 10.1021/acs.jproteome.8b00201. PubMed DOI PMC

Sanda M, Zhang L, Edwards NJ, Goldman R. Site-specific analysis of changes in the glycosylation of proteins in liver cirrhosis using data-independent workflow with soft fragmentation. Anal. Bioanal. Chem. 2016;409(2):619–627. doi: 10.1007/s00216-016-0041-8. PubMed DOI PMC

Kozlik P, Goldman R, Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410(20):5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC

Sanda M, Goldman R. Data independent analysis of IgG glycoforms in samples of unfractionated human plasma. Anal. Chem. 2016;88(20):10118–10125. doi: 10.1021/acs.analchem.6b02554. PubMed DOI PMC

Kozlik P, Goldman R, Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38(17):2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC

Acs A, Ozohanics O, Vekey K, Drahos L, Turiak L. Distinguishing core and antenna fucosylated glycopeptides based on low-energy tandem mass spectra. Anal. Chem. 2018;90(21):12776–12782. doi: 10.1021/acs.analchem.8b03140. PubMed DOI

Grieco A, Matera A, Di RP, Marcoccia S, Giancaterini A, Alfei B, Addolorato G, Varlese F, Gasbarrini G. Plasma levels of fibronectin in patients with chronic viral and alcoholic liver disease. Hepatogastroenterology. 1998;45(23):1731–1736. PubMed

Niu, L., Geyer, P. E., Wewer Albrechtsen, N. J., Gluud, L. L., Santos, A., Doll, S., Treit, P. V., Holst, J. J., Knop, F. K., Vilsboll, T., Junker, A., Sachs, S., Stemmer, K., Muller, T. D., Tschop, M. H., Hofmann, S. M., & Mann, M. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol. Syst. Biol.15 (3), e8793 (2019). PubMed PMC

Gangadharan B, Antrobus R, Dwek RA, Zitzmann N. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Physiol. Rev. 2007;53(10):1792–1799. PubMed

Benicky J, Sanda M, Pompach P, Wu J, Goldman R. Quantification of fucosylated hemopexin and complement factor h in plasma of patients with liver disease. Anal. Chem. 2014;86(21):10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC

Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics. Clin. Appl. 2015;9(1–2):17–32. doi: 10.1002/prca.201400152. PubMed DOI PMC

Sanda M, Pompach P, Brnakova Z, Wu J, Makambi K, Goldman R. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease. Mol. Cell Proteomics. 2013;12(5):1294–1305. doi: 10.1074/mcp.M112.023325. PubMed DOI PMC

Brockhausen I, Möller G, Merz G, Adermann K, Paulsen H. Control of mucin synthesis: The peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan Core 1 UDPgalactose:N-acetyl-d-galactosaminyl-R β3-galactosaminyltransferase. Biochemistry. 1990;29:10206–10212. doi: 10.1021/bi00496a008. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...