Novel insights into the BAP1-inactivated melanocytic tumor
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34857909
DOI
10.1038/s41379-021-00976-7
PII: S0893-3952(22)00118-1
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- epiteloidní a vřetenobuněčný névus * genetika MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- nádorové supresorové proteiny genetika MeSH
- nádory kůže * genetika patologie MeSH
- névus * MeSH
- pigmentový névus * genetika patologie MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- thiolesterasa ubikvitinu genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BAP1 protein, human MeSH Prohlížeč
- nádorové supresorové proteiny MeSH
- protoonkogenní proteiny B-Raf MeSH
- thiolesterasa ubikvitinu MeSH
BAP1-inactivated melanocytic tumor (BIMT) is a group of melanocytic neoplasms with epithelioid cell morphology molecularly characterized by the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, and a mutually exclusive mitogenic driver mutation, more commonly BRAF. BIMTs can occur as a sporadic lesion or, less commonly, in the setting of an autosomal dominant cancer susceptibility syndrome caused by a BAP1 germline inactivating mutation. Owing to the frequent identification of remnants of a conventional nevus, BIMTs are currently classified within the group of combined melanocytic nevi. "Pure" lesions can also be observed. We studied 50 BIMTs from 36 patients. Most lesions were composed of epithelioid melanocytes of varying size and shapes, resulting extreme cytomorphological heterogeneity. Several distinctive morphological variants of multinucleated/giant cells were identified. Some hitherto underrecognized microscopic features, especially regarding nuclear characteristics included nuclear blebbing, nuclear budding, micronuclei, shadow nuclei, peculiar cytoplasmic projections (ant-bear cells) often containing micronuclei and cell-in-cell structures (entosis). In addition, there were mixed nests of conventional and BAP1-inactivated melanocytes and squeezed remnants of the original nevus. Of the 26 lesions studied, 24 yielded a BRAF mutation, while in the remaining two cases there was a RAF1 fusion. BAP1 biallelic and singe allele mutations were found in 4/22 and 16/24 neoplasms, respectively. In five patients, there was a BAP1 germline mutation. Six novel, previously unreported BAP1 mutations have been identified. BAP1 heterozygous loss was detected in 11/22 lesions. Fluorescence in situ hybridization for copy number changes revealed a related amplification of both RREB1 and MYC genes in one tumor, whereas the remaining 20 lesions studied were negative; no TERT-p mutation was found in 14 studied neoplasms. Tetraploidy was identified in 5/21 BIMTs. Of the 21 patients with available follow-up, only one child had a locoregional lymph node metastasis. Our results support a progression of BIMTs from a conventional BRAF mutated in which the original nevus is gradually replaced by epithelioid BAP1-inactivated melanocytes. Some features suggest more complex underlying pathophysiological events that need to be elucidated.
Bioptical Laboratory Pilsen Czech Republic
Department of Dermatology University Hospital of Zurich Zurich Switzerland
Department of Pathology Emergency Clinical County Hospital Pius Brinzeu Timisoara Romania
Department of Pathology Regional Hospital Hranice Czech Republic
Department of Pathology University Hospital Campus Bio Medico Rome Italy
Institute of Pathology University of Ostrava Ostrava Czech Republic
Laboratory of Pathology CSD Health Care Ltd Kyiv Ukraine
Zobrazit více v PubMed
Elder, D. E., Massi, D., Scolyer, R. A., Willemze, R. & eds. WHO Classification of Skin Tumours. 4th edn. Lyon, France: International Agency for Research on Cancer (IARC) (2018).
Busam, K. J., Sung, J., Wiesner, T., von Deimling, A. & Jungbluth, A. Combined BRAF(V600E)-positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and conventional nevomelanocytes. Am. J. Surg. Pathol. 37, 193–199 (2013). PubMed DOI
Blokx, W. A. et al. NRAS-mutated melanocytic BAP1-associated intradermal tumor (MBAIT): a case report. Virchows Arch. 466, 117–121 (2015). PubMed DOI
Donati, M. et al. RAF1 gene fusions as a possible driver mechanism in rare BAP1-inactivated melanocytic tumors: a report of 2 cases. Am. J. Dermatopathol. 42, 961–966 (2020). PubMed DOI
Wiesner, T. et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am. J. Surg. Pathol. 36, 818–830 (2012). PubMed DOI PMC
Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373, 1926–1936 (2015). PubMed DOI
Garfield, E. M. et al. Histomorphologic spectrum of germline-related and sporadic BAP1-inactivated melanocytic tumors. J. Am. Acad. Dermatol. 79, 525–534 (2018). PubMed DOI
Wiesner, T. et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 43, 1018–1021 (2011). PubMed DOI PMC
Abdel-Rahman, M. H. et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet. 48, 856–859 (2011). PubMed DOI
Njauw, C. N. et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 7, e35295 (2012). PubMed DOI PMC
Popova, T. et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am. J. Hum. Genet. 92, 974–980 (2013). PubMed DOI PMC
Testa, J. R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011). PubMed DOI PMC
Wiesner, T. et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J. Clin. Oncol. 30, e337–e340 (2012). PubMed DOI
Ardakani, N. M., Palmer, D. L. & Wood, B. A. BAP1 deficient malignant melanoma arising from the intradermal component of a congenital melanocytic naevus. Pathology 47, 707–710 (2015). PubMed DOI
Marušić, Z., Buljan, M. & Busam, K. J. Histomorphologic spectrum of BAP1 negative melanocytic neoplasms in a family with BAP1-associated cancer susceptibility syndrome. J. Cutan. Pathol. 42, 406–412 (2015). PubMed DOI
Gerami, P. et al. Multiple cutaneous melanomas and clinically atypical moles in a patient with a novel germline BAP1 mutation. JAMA Dermatol. 151, 1235–1239 (2015). PubMed DOI PMC
Aung, P. P. et al. Melanoma with loss of BAP1 expression in patients with no family history of bap1-associated cancer susceptibility syndrome: a case series. Am. J. Dermatopathol. 41, 167–179 (2019). PubMed DOI PMC
Carbone, M. et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl. Med. 10, 179 (2012). PubMed DOI PMC
Wysozan, T. R., Khelifa, S., Turchan, K. & Alomari, A. K. The morphologic spectrum of germline-mutated BAP1-inactivated melanocytic tumors includes lesions with conventional nevic melanocytes: a case report and review of literature. J. Cutan. Pathol. 46, 852–857 (2019). PubMed DOI
Louw, A. et al. Histologically diverse BAP1-deficient melanocytic tumors in a patient with BAP1 tumor predisposition syndrome. Am. J. Dermatopathol. 42, 872–875 (2020). PubMed DOI
Foretová, L. et al. BAP1 syndrome - predisposition to malignant mesothelioma, skin and uveal melanoma, renal and other cancers. Klin. Onkol. 32, 118–122 (2019). PubMed
Donati, M. et al. Spitz tumors with ROS1 fusions: a clinicopathological study of 6 cases, including FISH for chromosomal copy number alterations and mutation analysis using next-generation sequencing. Am. J. Dermatopathol. 42, 92–102 (2020). PubMed DOI
Šteiner, P., Pavelka, J., Vaneček, T., Miesbauerová, M. & Skálová, A. Molecular methods for detection of prognostic and predictive markers in diagnosis of adenoid cystic carcinoma of the salivary gland origin. Cesk. Patol. 54, 132–136 (2018). PubMed
Švajdler, M. et al. Fibro-osseous pseudotumor of digits and myositis ossificans show consistent COL1A1-USP6 rearrangement: a clinicopathological and genetic study of 27 cases. Hum. Pathol. 88, 39–47 (2019). PubMed DOI
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). PubMed DOI PMC
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018). PubMed DOI
Hilbers, M. L. et al. Standardized diagnostic algorithm for spitzoid lesions aids clinical decision-making and management: a case series from a Swiss reference center. Oncotarget 12, 125–130 (2021). PubMed DOI PMC
Gerami, P. et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am. J. Surg. Pathol. 36, 808–817 (2012). PubMed DOI
Michal, M. Cellular blue naevi with microalveolar pattern-a type of naevus frequently confused with melanoma. Pathol. Res. Pract. 194, 83–86 (1998). PubMed DOI
Kazakov, D. V. & Michal, M. Melanocytic “ball-in-mitts” and “microalveolar structures” and their role in the development of cellular blue nevi. Ann. Diagn. Pathol. 11, 160–175 (2007). PubMed DOI
Piris, A., Mihm, M. C. Jr. & Hoang, M. P. BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations. Hum. Pathol. 46, 239–245 (2015). PubMed DOI
Haugh, A. M. et al. Genotypic and phenotypic features of BAP1 cancer syndrome: a report of 8 new families and review of cases in the literature. JAMA Dermatol. 153, 999–1006 (2017). PubMed DOI PMC
Yeh, I. et al. Ambiguous melanocytic tumors with loss of 3p21. Am. J. Surg. Pathol. 38, 1088–1095 (2014). PubMed DOI PMC
Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017). PubMed DOI
Bastian, B. C., LeBoit, P. E. & Pinkel, D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am. J. Pathol. 157, 967–972 (2000). PubMed DOI PMC
Sunshine, J. C. et al. Melanocytic neoplasms with MAP2K1 in frame deletions and spitz morphology. Am. J. Dermatopathol. 42, 923–931 (2020). PubMed DOI PMC
Donati, M. et al. MAP2K1-mutated melanocytic neoplasms with a SPARK-like morphology. Am. J. Dermatopathol. 43, 412–417 (2021). PubMed DOI
Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015). PubMed DOI
Llamas-Velasco, M., Pérez-Gónzalez, Y. C., Requena, L. & Kutzner, H. Histopathologic clues for the diagnosis of Wiesner nevus. J. Am. Acad. Dermatol. 70, 549–554 (2014). PubMed DOI
Webster, J. D. et al. The tumor suppressor BAP1 cooperates with BRAFV600E to promote tumor formation in cutaneous melanoma. Pigment Cell Melanoma Res. 32, 269–279 (2019). PubMed DOI
Gray-Schopfer, V. C. et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer. 95, 496–505 (2006). PubMed DOI PMC
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005). PubMed DOI
Saggini, A. et al. Uncommon histopathological variants of malignant melanoma. Part 2. Am. J. Dermatopathol. 41, 321–342 (2019). PubMed DOI
Houlier, A. et al. Melanocytic tumors with MAP3K8 fusions: report of 33 cases with morphological-genetic correlations. Mod. Pathol. 33, 846–857 (2020). PubMed DOI
O’Shea, S. J. et al. Histopathology of melanocytic lesions in a family with an inherited BAP1 mutation. J. Cutan. Pathol. 43, 287–289 (2016). PubMed DOI
Pouryazdanparast, P., Haghighat, Z., Beilfuss, B. A., Guitart, J. & Gerami, P. Melanocytic nevi with an atypical epithelioid cell component: clinical, histopathologic, and fluorescence in situ hybridization findings. Am. J. Surg. Pathol. 35, 1405–1412 (2011). PubMed DOI
Ye, J., Sheahon, K. M., LeBoit, P. E., McCalmont, T. H. & Lang, U. E. BAP1-inactivated melanocytic tumors demonstrate prominent centrosome amplification and associated loss of primary cilia. J. Cutan. Pathol. 8, 1353–1360 (2021). DOI
Borel, F., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc. Natl. Acad. Sci. USA 99, 9819–9824 (2002). PubMed DOI PMC
Fischer, A. S. & High, W. A. The difficulty in interpreting gene expression profiling in BAP-negative melanocytic tumors. J. Cutan. Pathol. 45, 659–666 (2018). DOI
Gammon, B., Traczyk, T. N. & Gerami, P. Clumped perinuclear BAP1 expression is a frequent finding in sporadic epithelioid Spitz tumors. J. Cutan. Pathol. 40, 538–542 (2013). PubMed DOI
Hühns, M. et al. High mutational burden in colorectal carcinomas with monoallelic POLE mutations: absence of allelic loss and gene promoter methylation. Mod. Pathol. 33, 1220–1231 (2019). PubMed DOI
Lee, S. et al. TERT promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms. Sci. Rep. 5, 11200 (2015). PubMed DOI PMC
Cohen, J. N., Yeh, I., Mully, T. W., LeBoit, P. E. & McCalmont, T. H. Genomic and clinicopathologic characteristics of PRKAR1A-inactivated melanomas: toward genetic distinctions of animal-type melanoma/pigment synthesizing melanoma. Am. J. Surg. Pathol. 44, 805–816 (2020). PubMed DOI
Yeh, I. New and evolving concepts of melanocytic nevi and melanocytomas. Mod. Pathol. 33, 1–14 (2020). PubMed DOI