RAF1 Gene Fusions as a Possible Driver Mechanism in Rare BAP1-Inactivated Melanocytic Tumors: A Report of 2 Cases
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu kazuistiky, časopisecké články
PubMed
32769548
DOI
10.1097/dad.0000000000001740
PII: 00000372-202012000-00010
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- fúze genů * MeSH
- genetická predispozice k nemoci MeSH
- GTP-fosfohydrolasy genetika MeSH
- imunohistochemie MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mutační analýza DNA MeSH
- nádorové biomarkery analýza genetika MeSH
- nádorové supresorové proteiny genetika MeSH
- nádory kůže chemie genetika patologie chirurgie MeSH
- pigmentový névus chemie genetika patologie chirurgie MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- protoonkogenní proteiny c-raf genetika MeSH
- thiolesterasa ubikvitinu genetika MeSH
- umlčování genů * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- BAP1 protein, human MeSH Prohlížeč
- BRAF protein, human MeSH Prohlížeč
- GTP-fosfohydrolasy MeSH
- membránové proteiny MeSH
- nádorové biomarkery MeSH
- nádorové supresorové proteiny MeSH
- NRAS protein, human MeSH Prohlížeč
- protoonkogenní proteiny B-Raf MeSH
- protoonkogenní proteiny c-raf MeSH
- Raf1 protein, human MeSH Prohlížeč
- thiolesterasa ubikvitinu MeSH
BRCA1-associated protein (BAP1)-inactivated melanocytic tumor (BIMT) is a group of epithelioid melanocytic neoplasms characterized by the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21. They occur sporadically or in the setting of an autosomal-dominant cancer susceptibility syndrome that predisposes to the development of different internal malignancies. Most of these cutaneous lesions are associated with a BRAF-mutated melanocytic nevus and therefore are included in the group of combined nevi in the last WHO classification of skin tumors. Apart from a BRAF mutation, an NRAS mutation has been reported in rare cases, whereas in some lesions no driver mutation has been detected. Here, we report 2 cases of BIMTs with a BAP1 mutation and a RAF1 fusion. Both lesions proved to be BRAF and NRAS wild type and were associated with a conventional melanocytic nevus with dysplastic junctional features. We suggest that RAF1 fusions can represent an underlying driver genetic event in these cases. Our study extends the morphological and molecular spectrum in BIMTs.
Bioptical Laboratory Pilsen Czech Republic; and
Department of Pathology University Hospital Campus Bio Medico Rome Italy
Zobrazit více v PubMed
Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43:1018–1021.
Carbone M, Yang H, Pass HI, et al. BAP1 and cancer. Nat Rev Cancer. 2013;13:153–159.
Sowa ME, Bennett EJ, Gygi SP, et al. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.
Ventii KH, Devi NS, Friedrich KL, et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 2008;68:6953–6962.
Garfield EM, Walton KE, Quan VL, et al. Histomorphologic spectrum of germline-related and sporadic BAP1-inactivated melanocytic tumors. J Am Acad Dermatol. 2018;79:525–534.
Abdel-Rahman MH, Pilarski R, Cebulla CM, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48:856–859.
Njauw CN, Kim I, Piris A, et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One. 2012;7:e35295.
Popova T, Hebert L, Jacquemin V, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013;92:974–980.
Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–1025.
Wiesner T, Fried I, Ulz P, et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol. 2012;30:e337–340.
Wiesner T, Murali R, Fried I, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36:818–830.
Llamas-Velasco M, Pérez-Gónzalez YC, Requena L, et al. Histopathologic clues for the diagnosis of Wiesner nevus. J Am Acad Dermatol. 2014;70:549–554.
Busam KJ, Sung J, Wiesner T, et al. Combined BRAF(V600E)-positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and conventional nevomelanocytes. Am J Surg Pathol. 2013;37:193–199.
Gerami P, Yélamos O, Lee CY, et al. Multiple cutaneous melanomas and clinically atypical moles in a patient with a novel germline BAP1 mutation. JAMA Dermatol. 2015;151:1235–1239.
Requena C, Sanz V, Nagore E, et al. BAP1-deficient and VE1-negative atypical Spitz tumor. J Cutan Pathol. 2015;42:564–567.
Soares de Sá BC, de Macedo MP, Torrezan GT, et al. BAP1 tumor predisposition syndrome case report: pathological and clinical aspects of BAP1-inactivated melanocytic tumors (BIMTs), including dermoscopy and confocal microscopy. BMC Cancer. 2019;19:1077.
Yeh I, Mully TW, Wiesner T, et al. Ambiguous melanocytic tumors with loss of 3p21. Am J Surg Pathol. 2014;38:1088–1095.
Blokx WA, Rabold K, Bovenschen HJ, et al. NRAS-mutated melanocytic BAP1-associated intradermal tumor (MBAIT): a case report. Virchows Arch. 2015;466:117–121.
Kazakov DV, Michal M. Melanocytic ball-in-mitts and microalveolar structures and their role in the development of cellular blue nevi. Ann Diagn Pathol. 2007;11:160–175.
Donati M, Kastnerova L, Martinek P, et al. Spitz tumors with ROS1 fusions: a clinicopathological study of 6 cases, including FISH for chromosomal copy number alterations and mutation analysis using next-generation sequencing. Am J Dermatopathol 2020;42:92–102.
Švajdler M, Michal M, Martínek P, et al. Fibro-osseous pseudotumor of digits and myositis ossificans show consistent COL1A1-USP6 rearrangement: a clinicopathological and genetic study of 27 cases. Hum Pathol. 2019;88:39–47.
Piris A, Mihm MC Jr, Hoang MP. BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations. Hum Pathol. 2015;46:239–245.
Carbone M, Ferris LK, Baumann F, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.
Ardakani NM, Palmer DL, Wood BA. BAP1 deficient malignant melanoma arising from the intradermal component of a congenital melanocytic naevus. Pathology. 2015;47:707–710.
Aung PP, Nagarajan P, Tetzlaff MT, et al. Melanoma with loss of BAP1 expression in patients with No family history of BAP1-associated cancer susceptibility syndrome: a case series. Am J Dermatopathol. 2019;41:167–179.
Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175–180.
Williams EA, Shah N, Montesion M, et al. Melanomas with activating RAF1 fusions: clinical, histopathologic, and molecular profiles. Mod Pathol. 2020.
Jain P, Fierst TM, Han HJ, et al. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene. 2017;36:6348–6358.
McEvoy CR, Xu H, Smith K, et al. Profound MEK inhibitor response in a cutaneous melanoma harboring a GOLGA4-RAF1 fusion. J Clin Invest. 2019;129:1940–1945.
Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16:793–798.
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 2015;16:281–298.
Elder DE, Massi D, Scolyer RA, et al. WHO Classification of Skin Tumours. 4th ed. Lyon, France: International Agency for Research on Cancer (IARC), 2018.
Novel insights into the BAP1-inactivated melanocytic tumor