Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34866300
PubMed Central
PMC8811628
DOI
10.15252/embr.202153514
Knihovny.cz E-zdroje
- Klíčová slova
- NanoLuc, miR-10b, miR-205, miRNA, oocyte,
- MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- oocyty metabolismus MeSH
- oogeneze genetika MeSH
- prasata MeSH
- skot MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA * MeSH
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.
Bioinformatics Group Faculty of Science University of Zagreb Zagreb Croatia
Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague 4 Czech Republic
Zobrazit více v PubMed
Abe K, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, Vlahovicek K, Svoboda P, Schultz RM, Aoki F (2015) The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3' processing. EMBO J 34: 1523–1537 PubMed PMC
Appeltant R, Beek J, Vandenberghe L, Maes D, Van Soom A (2015) Increasing the cAMP concentration during in vitro maturation of pig oocytes improves cumulus maturation and subsequent fertilization in vitro. Theriogenology 83: 344–352 PubMed
Bartel DP (2018) Metazoan microRNAs. Cell 173: 20–51 PubMed PMC
Bishop JO, Morton JG, Rosbash M, Richardson M (1974) Three abundance classes in HeLa cell messenger RNA. Nature 250: 199–204 PubMed
Blaha M, Nemcova L, Kepkova KV, Vodicka P, Prochazka R (2015) Gene expression analysis of pig cumulus‐oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor‐like peptides. Reprod Biol Endocrinol 13: 113 PubMed PMC
Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56: 347–359 PubMed PMC
Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA‐target recognition. PLoS Biol 3: e85 PubMed PMC
Brower PT, Gizang E, Boreen SM, Schultz RM (1981) Biochemical studies of mammalian oogenesis: synthesis and stability of various classes of RNA during growth of the mouse oocyte in vitro . Dev Biol 86: 373–383 PubMed
Carter MG, Sharov AA, VanBuren V, Dudekula DB, Carmack CE, Nelson C, Ko MS (2005) Transcript copy number estimation using a mouse whole‐genome oligonucleotide microarray. Genome Biol 6: R61 PubMed PMC
Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182‐mediated recruitment of CCR4‐NOT through conserved W‐containing motifs. Nat Struct Mol Biol 18: 1218–1226 PubMed PMC
Chen L, Hu X, Dai Y, Li Q, Wang X, Li Q, Xue K, Li Y, Liang J, Wang Y et al (2012) MicroRNA‐27a activity is not suppressed in porcine oocytes. Front Biosci 4: 2679–2685 PubMed
Chen Y, Boland A, Kuzuoglu‐Ozturk D, Bawankar P, Loh B, Chang CT, Weichenrieder O, Izaurralde E (2014) A DDX6‐CNOT1 complex and W‐binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54: 737–750 PubMed
D'Ambrogio A, Gu W, Udagawa T, Mello CC, Richter JD (2012) Specific miRNA stabilization by Gld2‐catalyzed monoadenylation. Cell Rep 2: 1537–1545 PubMed PMC
De Leon V, Johnson A, Bachvarova R (1983) Half‐lives and relative amounts of stored and polysomal ribosomes and poly(A) + RNA in mouse oocytes. Dev Biol 98: 400–408 PubMed
Demeter T, Vaskovicova M, Malik R, Horvat F, Pasulka J, Svobodova E, Flemr M, Svoboda P (2019) Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2: e201800289 PubMed PMC
Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54: 766–776 PubMed PMC
Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M (2016) Impact of microRNA levels, target‐site complementarity, and cooperativity on competing endogenous RNA‐regulated gene expression. Mol Cell 64: 565–579 PubMed PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA‐seq aligner. Bioinformatics 29: 15–21 PubMed PMC
Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17: 438–442 PubMed PMC
England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27: 1175–1187 PubMed PMC
Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y (2015) Single‐cell RNA‐seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol 16: 148 PubMed PMC
Freimer JW, Krishnakumar R, Cook MS, Blelloch R (2018) Expression of alternative Ago2 isoform associated with loss of microRNA‐driven translational repression in mouse oocytes. Curr Biol 28: 296–302 PubMed PMC
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105 PubMed PMC
Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M (2018) Target RNAs strike back on microRNAs. Front Genet 9: 435 PubMed PMC
Gad A, Nemcova L, Murin M, Kanka J, Laurincik J, Benc M, Pendovski L, Prochazka R (2019) microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol Reprod Dev 86: 426–439 PubMed
Gad A, Murin M, Nemcova L, Bartkova A, Laurincik J, Prochazka R (2020) Inhibition of miR‐152 during in vitro maturation enhances the developmental potential of porcine embryos. Animals 10: 2289 PubMed PMC
Garcia‐Lopez J, Alonso L, Cardenas DB, Artaza‐Alvarez H, Hourcade Jde D, Martinez S, Brieno‐Enriquez MA, Del Mazo J (2015) Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA 21: 946–962 PubMed PMC
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR‐430 promotes deadenylation and clearance of maternal mRNAs. Science 312: 75–79 PubMed
Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E (2014) Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA 111: 4139–4144 PubMed PMC
Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT (2006) Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod 3: 2 PubMed PMC
Hastie ND, Bishop JO (1976) The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9: 761–774 PubMed
He L, Thomson JM, Hemann MT, Hernando‐Monge E, Mu D, Goodson S, Powers S, Cordon‐Cardo C, Lowe SW, Hannon GJ et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435: 828–833 PubMed PMC
Horvat F, Fulka H, Jankele R, Malik R, Jun M, Solcova K, Sedlacek R, Vlahovicek K, Schultz RM, Svoboda P (2018) Role of Cnot6l in maternal mRNA turnover. Life Sci Alliance 1: e201800084 PubMed PMC
Hutvagner G, Zamore PD (2002) A microRNA in a multiple‐turnover RNAi enzyme complex. Science 297: 2056–2060 PubMed
Hwang IS, Park MR, Lee HS, Kwak TU, Son HY, Kang JK, Lee JW, Lee K, Park EW, Hwang S (2020) Developmental and degenerative characterization of porcine parthenogenetic fetuses during early pregnancy. Animals 10: 622 PubMed PMC
Jahn CL, Baran MM, Bachvarova R (1976) Stability of RNA synthesized by the mouse oocyte during its major growth phase. J Exp Zool 197: 161–171 PubMed
Jiao Y, Gao B, Wang G, Li H, Ahmed JZ, Zhang D, Ye S, Liu S, Li M, Shi D et al (2020) The key long non‐coding RNA screening and validation between germinal vesicle and metaphase II of porcine oocyte in vitro maturation. Reprod Domest Anim 55: 351–363 PubMed
Jinek M, Doudna JA (2009) A three‐dimensional view of the molecular machinery of RNA interference. Nature 457: 405–412 PubMed
Kataruka S, Modrak M, Kinterova V, Malik R, Zeitler DM, Horvat F, Kanka J, Meister G, Svoboda P (2020) MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res 48: 8050–8062 PubMed PMC
Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26: 2204–2207 PubMed PMC
Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev 10: 126–139 PubMed
Kinterova V, Kanka J, Petruskova V, Toralova T (2019) Inhibition of Skp1‐Cullin‐F‐box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos. Biol Reprod 100: 896–906 PubMed
Kozomara A, Birgaoanu M, Griffiths‐Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47: D155–D162 PubMed PMC
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610 PubMed
Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438: 685–689 PubMed
Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, Wei Y, Zhao Q, Wang J, Liu Y et al (2020) 3'‐Terminal 2'‐O‐methylation of lung cancer miR‐21‐5p enhances its stability and association with Argonaute 2. Nucleic Acids Res 48: 7027–7040 PubMed PMC
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923–930 PubMed
Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299: 1540 PubMed
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua‐Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441 PubMed
Liu Y, Zhu Z, Ho IHT, Shi Y, Li J, Wang X, Chan MTV, Cheng CHK (2020) Genetic deletion of miR‐430 disrupts maternal‐zygotic transition and embryonic body plan. Front Genet 11: 853 PubMed PMC
Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20: 265–270 PubMed PMC
Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single‐cell to cell‐pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24: 496–510 PubMed PMC
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185–197 PubMed
Nishihara T, Zekri L, Braun JE, Izaurralde E (2013) miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res 41: 8692–8705 PubMed PMC
Piko L, Clegg KB (1982) Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol 89: 362–378 PubMed
Piwecka M, Glažar P, Hernandez‐Miranda LR, Memczak S, Wolf SA, Rybak‐Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357: eaam8526 PubMed
Prather RS (1993) Nuclear control of early embryonic development in domestic pigs. J Reprod Fertil Suppl 48: 17–29 PubMed
Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, de Sousa C, Lopes SM, van der Westerlaken LA, Zischler H, Butter F et al (2015) Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 10: 2069–2082 PubMed
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N (2014) Human DDX6 effects miRNA‐mediated gene silencing via direct binding to CNOT1. RNA 20: 1398–1409 PubMed PMC
Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single‐molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162: 84–95 PubMed PMC
Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P, Filipowicz W (2006) Effects of Dicer and Argonaute down‐regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res 34: 4801–4815 PubMed PMC
Sheu‐Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ (2019) Structural basis for target‐directed microRNA degradation. Mol Cell 75: 1243–1255 PubMed PMC
Shumate A, Salzberg SL (2020) Liftoff: accurate mapping of gene annotations. Bioinformatics 37: 1639–1643 PubMed PMC
Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, Neuhoff C, Tholen E, Schellander K, Salilew‐Wondim D (2017) MicroRNA‐130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res 10: 37 PubMed PMC
Sollner JF, Leparc G, Hildebrandt T, Klein H, Thomas L, Stupka E, Simon E (2017) An RNA‐Seq atlas of gene expression in mouse and rat normal tissues. Sci Data 4: 170185 PubMed PMC
Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev 6: 127–138 PubMed
Su H, Trombly MI, Chen J, Wang XZ (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23: 304–317 PubMed PMC
Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20: 271–277 PubMed PMC
Svoboda P, Franke V, Schultz RM (2015) Sculpting the transcriptome during the oocyte‐to‐embryo transition in mouse. Curr Top Dev Biol 113: 305–349 PubMed
Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit‐Mehouas S, Arnaud P, Tomizawa S, Andrews S, Kelsey G (2015) Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 16: 209 PubMed PMC
Wang WH, Abeydeera LR, Okuda K, Niwa K (1994) Penetration of porcine oocytes during maturation in vitro by cryopreserved, ejaculated spermatozoa. Biol Reprod 50: 510–515 PubMed
Wang TY, Zhang J, Zhu J, Lian HY, Yuan HJ, Gao M, Luo MJ, Tan JH (2017) Expression profiles and function analysis of microRNAs in postovulatory aging mouse oocytes. Aging 9: 1186–1201 PubMed PMC
Wee LM, Flores‐Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA‐binding properties. Cell 151: 1055–1067 PubMed PMC
Yang Q, Lin J, Liu M, Li R, Tian B, Zhang X, Xu B, Liu M, Zhang X, Li Y et al (2016) Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci Adv 2: e1501482 PubMed PMC
Yekta S, Shih IH, Bartel DP (2004) MicroRNA‐directed cleavage of HOXB8 mRNA. Science 304: 594–596 PubMed