Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34867270
PubMed Central
PMC8633395
DOI
10.3389/fnagi.2021.731603
Knihovny.cz E-resources
- Keywords
- MCI, MRS, astrocytes, biomarker, glia, microglia, myo-inositol, spatial memory,
- Publication type
- Journal Article MeSH
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czechia
Department of Translational Research in Psychiatry Max Planck Institute of Psychiatry Munich Germany
Max Planck School of Cognition Leipzig Germany
Proteomics and Biomarkers Max Planck Institute of Psychiatry Munich Germany
Research Group Neuronal Plasticity Max Planck Institute of Psychiatry Munich Germany
Scientific Core Unit Neuroimaging Max Planck Institute of Psychiatry Munich Germany
See more in PubMed
Aisen P., Touchon J., Amariglio R., Andrieu S., Bateman R., Breitner J., et al. (2017). EU/US/CTAD Task Force: Lessons Learned from Recent and Current Alzheimer’s Prevention Trials. PubMed DOI PMC
Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. PubMed DOI PMC
Andersen J. V., Christensen S. K., Westi E. W., Diaz-delCastillo M., Tanila H., Schousboe A., et al. (2020). Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. PubMed DOI
Annear M. J., Toye C., McInerney F., Eccleston C., Tranter B., Elliott K. E., et al. (2015). What should we know about dementia in the 21st century? A Delphi consensus study. PubMed DOI PMC
Bachli H., Steiner M. A., Habersetzer U., Wotjak C. T. (2008). Increased water temperature renders single-housed C57BL/6J mice susceptible to antidepressant treatment in the forced swim test. PubMed DOI
Best J. G., Stagg C. J., Dennis A. (2014). “Chapter 2.5 - Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate,” in
Binetti G., Magni E., Padovani A., Cappa S. F., Bianchetti A., Trabucchi M. (1996). Executive dysfunction in early Alzheimer’s disease. PubMed DOI PMC
Brand A., Richter-Landsberg C., Leibfritz D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. PubMed DOI
Brandt J., Aretouli E., Neijstrom E., Samek J., Manning K., Albert M. S., et al. (2009). Selectivity of executive function deficits in mild cognitive impairment. PubMed DOI PMC
Brinks V., van der Mark M., de Kloet R., Oitzl M. (2007). Emotion and cognition in high and low stress sensitive mouse strains: a combined neuroendocrine and behavioral study in BALB/c and C57BL/6J mice. PubMed DOI PMC
Burman O., Marsella G., Di Clemente A., Cervo L. (2018). The effect of exposure to low frequency electromagnetic fields (EMF) as an integral part of the housing system on anxiety-related behaviour, cognition and welfare in two strains of laboratory mouse. PubMed DOI PMC
Campisi J., Kapahi P., Lithgow G. J., Melov S., Newman J. C., Verdin E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. PubMed DOI PMC
Castellano G., Dias C. S., Foerster B., Li L. M., Covolan R. J. (2012). NAA and NAAG variation in neuronal activation during visual stimulation. PubMed DOI PMC
Catani M., Cherubini A., Howard R., Tarducci R., Pelliccioli G. P., Piccirilli M., et al. (2001). (1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. PubMed DOI
Chen C. P., Eastwood S. L., Hope T., McDonald B., Francis P. T., Esiri M. M. (2000). Immunocytochemical study of the dorsal and median raphe nuclei in patients with Alzheimer’s disease prospectively assessed for behavioural changes. PubMed DOI
Chen S. Q., Cai Q., Shen Y. Y., Xu C. X., Zhou H., Zhao Z. (2016). Hydrogen Proton Magnetic Resonance Spectroscopy in Multidomain Amnestic Mild Cognitive Impairment and Vascular Cognitive Impairment Without Dementia. PubMed DOI PMC
Chen S. Q., Wang P. J., Ten G. J., Zhan W., Li M. H., Zang F. C. (2009). Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice. PubMed DOI PMC
Chen Z., Zhong C. (2013). Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. PubMed DOI
Cherix A., Larrieu T., Grosse J., Rodrigues J., McEwen B., Nasca C., et al. (2020). Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. PubMed DOI PMC
Chowdhury S. M., Du X., Tolić N., Wu S., Moore R. J., Mayer M. U., et al. (2009). Identification of cross-linked peptides after click-based enrichment using sequential collision-induced dissociation and electron transfer dissociation tandem mass spectrometry. PubMed DOI PMC
Ciavardelli D., Piras F., Consalvo A., Rossi C., Zucchelli M., Di Ilio C., et al. (2016). Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects. PubMed DOI
Cowen P., Sherwood A. C. (2013). The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. PubMed DOI
Craft J. M., Watterson D. M., Marks A., Van Eldik L. J. (2005). Enhanced susceptibility of S-100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human beta-amyloid. PubMed DOI
Cummings J. L., Tong G., Ballard C. (2019). Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. PubMed DOI PMC
Ebert T. G. (2021).
Ferreira-Vieira T. H., Guimaraes I. M., Silva F. R., Ribeiro F. M. (2016). Alzheimer’s disease: Targeting the Cholinergic System. PubMed DOI PMC
Flurkey K., Currer J. M., Harrison D. E. (2007). “The Mouse in Aging Research,” in
Francis D. D., Szegda K., Campbell G., Martin W. D., Insel T. R. (2003). Epigenetic sources of behavioral differences in mice. PubMed DOI
Francis D. D., Zaharia M. D., Shanks N., Anisman H. (1995). Stress-induced disturbances in Morris water-maze performance: interstrain variability. PubMed DOI
Franczak M., Prost R. W., Antuono P. G., Mark L. P., Jones J. L., Ulmer J. L. (2007). Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. PubMed DOI
Fuochi S., Rigamonti M., Iannello F., Raspa M., Scavizzi F., de Girolamo P., et al. (2021). Phenotyping Spontaneous Locomotor Activity in Inbred and Outbred Mouse Strains by Using Digital Ventilated Cages. PubMed DOI
Gao F., Barker P. B. (2014). Various MRS application tools for Alzheimer disease and mild cognitive impairment. PubMed DOI PMC
Garthe A., Kempermann G. (2013). An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. PubMed DOI PMC
Gauthier S., Reisberg B., Zaudig M., Petersen R. C., Ritchie K., Broich K., et al. (2006). Mild cognitive impairment. PubMed DOI
Geldenhuys W. J., Van der Schyf C. J. (2011). Role of serotonin in Alzheimer’s disease: a new therapeutic target? PubMed DOI
Glanville N. T., Byers D. M., Cook H. W., Spence M. W., Palmer F. B. (1989). Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. PubMed DOI
Grady C. (2012). The cognitive neuroscience of ageing. PubMed DOI PMC
Hampel H., Lista S., Teipel S. J., Garaci F., Nisticò R., Blennow K., et al. (2014). Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. PubMed DOI
Hendricksen M., Thomas A. J., Ferrier I. N., Ince P., O’Brien J. T. (2004). Neuropathological study of the dorsal raphe nuclei in late-life depression and Alzheimer’s disease with and without depression. PubMed DOI
Hering H., Sheng M. (2001). Dendritic spines: structure, dynamics and regulation. PubMed DOI
Huang W., Alexander G. E., Chang L., Shetty H. U., Krasuski J. S., Rapoport S. I., et al. (2001). Brain metabolite concentration and dementia severity in Alzheimer’s disease: a (1)H MRS study. PubMed DOI
Ito D., Imai Y., Ohsawa K., Nakajima K., Fukuuchi Y., Kohsaka S. (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. PubMed DOI
Johnson E. C. B., Dammer E. B., Duong D. M., Ping L., Zhou M., Yin L., et al. (2020). Large-Scale Proteomic Analysis of Alzheimer’s Disease Brain and Cerebrospinal Fluid Reveals Early Changes in Energy Metabolism Associated with Microglia and Astrocyte Activation. PubMed DOI PMC
Jupp B., Sawiak S. J., van der Veen B., Lemstra S., Toschi C., Barlow R. L., et al. (2020). Diminished Myoinositol in Ventromedial Prefrontal Cortex Modulates the Endophenotype of Impulsivity. PubMed DOI PMC
Kantarci K., Jack C. R., Jr., Xu Y. C., Campeau N. G., O’Brien P. C., Smith G. E., et al. (2000). Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. PubMed DOI PMC
Kantarci K., Knopman D. S., Dickson D. W., Parisi J. E., Whitwell J. L., Weigand S. D., et al. (2008). Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. PubMed DOI PMC
Kantarci K., Weigand S. D., Przybelski S. A., Shiung M. M., Whitwell J. L., Negash S., et al. (2009). Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. PubMed DOI PMC
Keeler J. F., Robbins T. W. (2011). Translating cognition from animals to humans. PubMed DOI
Kleinknecht K. R., Bedenk B. T., Kaltwasser S. F., Grunecker B., Yen Y. C., Czisch M., et al. (2012). Hippocampus-dependent place learning enables spatial flexibility in C57BL6/N mice. PubMed DOI PMC
Lanz B., Abaei A., Braissant O., Choi I. Y., Cudalbu C., Henry P. G., et al. (2020). Magnetic resonance spectroscopy in the rodent brain: Experts’ consensus recommendations. PubMed DOI PMC
Li J., Wu H., Liu Y., Yang L. (2020). High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. PubMed DOI PMC
Lin A., Andronesi O., Bogner W., Choi I. Y., Coello E., Cudalbu C., et al. (2021). Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts’ consensus recommendations. PubMed DOI PMC
Maccioni R. B., Gonzalez A., Andrade V., Cortes N., Tapia J. P., Guzman-Martinez L. (2018). Alzheimer s Disease in the Perspective of Neuroimmunology. PubMed DOI PMC
Mapstone M., Cheema A. K., Fiandaca M. S., Zhong X., Mhyre T. R., MacArthur L. H., et al. (2014). Plasma phospholipids identify antecedent memory impairment in older adults. PubMed DOI PMC
Michaud T. L., Su D., Siahpush M., Murman D. L. (2017). The Risk of Incident Mild Cognitive Impairment and Progression to Dementia Considering Mild Cognitive Impairment Subtypes. PubMed DOI PMC
Michetti F., D’Ambrosi N., Toesca A., Puglisi M. A., Serrano A., Marchese E., et al. (2019). The S100B story: from biomarker to active factor in neural injury. PubMed DOI
Mondello S., Hayes R. L. (2015). “Chapter 16 - Biomarkers,” in PubMed DOI
Montgomery S. A., Thal L. J., Amrein R. (2003). Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. PubMed DOI
Mori T., Town T., Tan J., Yada N., Horikoshi Y., Yamamoto J., et al. (2006). Arundic Acid ameliorates cerebral amyloidosis and gliosis in Alzheimer transgenic mice. PubMed DOI
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. PubMed DOI
Moser M. B., Moser E. I., Forrest E., Andersen P., Morris R. G. (1995). Spatial learning with a minislab in the dorsal hippocampus. PubMed DOI PMC
Mufson E. J., Counts S. E., Perez S. E., Ginsberg S. D. (2008). Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. PubMed DOI PMC
Nasca C., Bigio B., Lee F. S., Young S. P., Kautz M. M., Albright A., et al. (2018). Acetyl-l-carnitine deficiency in patients with major depressive disorder. PubMed DOI PMC
Nasca C., Xenos D., Barone Y., Caruso A., Scaccianoce S., Matrisciano F., et al. (2013). L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. PubMed DOI PMC
Olabarria M., Noristani H. N., Verkhratsky A., Rodríguez J. J. (2011). Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? PubMed DOI PMC
Oz G., Nelson C. D., Koski D. M., Henry P. G., Marjanska M., Deelchand D. K., et al. (2010). Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. PubMed DOI PMC
Patterson C. (2018).
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. PubMed DOI
Petersen R. C. (2016). Mild Cognitive Impairment. PubMed DOI PMC
Pluskal T., Castillo S., Villar-Briones A., Oresic M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. PubMed DOI PMC
Reed D., Bachmanov A. A., Tordoff M. G. (2007). Forty mouse strain survey of body composition. PubMed DOI PMC
Reichel J. M., Bedenk B. T., Czisch M., Wotjak C. T. (2017). Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice. PubMed DOI
Reichel J. M., Nissel S., Rogel-Salazar G., Mederer A., Käfer K., Bedenk B. T., et al. (2014). Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus. PubMed DOI PMC
Robinson S. R. (2000). Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. PubMed DOI
Ruediger S., Spirig D., Donato F., Caroni P. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. PubMed DOI
Schroeter M. L., Steiner J. (2009). Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. PubMed DOI
Shapiro L. A., Bialowas-McGoey L. A., Whitaker-Azmitia P. M. (2010). Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer’s Disease: Studies in an S100B Overexpressing Mouse Model. PubMed DOI PMC
Sigurdsson T., Duvarci S. (2015). Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. PubMed DOI PMC
Sturrock A., Laule C., Wyper K., Milner R. A., Decolongon J., Dar Santos R., et al. (2015). A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. PubMed DOI
Thoeringer C. K., Pfeiffer U. J., Rammes G., Pamplona F. A., Moosmang S., Wotjak C. T. (2010). Early life environment determines the development of adult phobic-like fear responses in BALB/cAnN mice. PubMed DOI
Tucker A. M., Stern Y. (2011). Cognitive reserve in aging. PubMed DOI PMC
Van Dam D., Lenders G., De Deyn P. P. (2006). Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. PubMed DOI
Van der Flier W. M., Scheltens P. (2005). Epidemiology and risk factors of dementia. PubMed DOI PMC
Voevodskaya O., Sundgren P. C., Strandberg O., Zetterberg H., Minthon L., Blennow K., et al. (2016). Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. PubMed DOI PMC
Wang H., Tan L., Wang H. F., Liu Y., Yin R. H., Wang W. Y., et al. (2015). Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. PubMed DOI
Wang Z., Zhao C., Yu L., Zhou W., Li K. (2009). Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. PubMed DOI
Watanabe T., Shiino A., Akiguchi I. (2010). Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. PubMed DOI
Weller J., Budson A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. PubMed DOI PMC
Whalley L. J., Deary I. J., Appleton C. L., Starr J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. PubMed DOI
White H. L., Scates P. W. (1990). Acetyl-L-carnitine as a precursor of acetylcholine. PubMed DOI
Whitehouse P. J., Price D. L., Clark A. W., Coyle J. T., DeLong M. R. (1981). Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. PubMed DOI
Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. PubMed DOI
Xu C. J., Wang J. L., Jing P., Min L. (2019). Tph2 Genetic Ablation Contributes to Senile Plaque Load and Astrogliosis in APP/PS1 Mice. PubMed DOI
Xu H., Zhang H., Zhang J., Huang Q., Shen Z., Wu R. (2016). Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. PubMed DOI
Yao J., Irwin R. W., Zhao L., Nilsen J., Hamilton R. T., Brinton R. D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. PubMed DOI PMC
Yoshida M., Goto K., Watanabe S. (2001). Task-dependent strain difference of spatial learning in C57BL/6N and BALB/c mice. PubMed DOI
Zaharia M. D., Kulczycki J., Shanks N., Meaney M. J., Anisman H. (1996). The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors. PubMed DOI
Zhang B., Ferman T. J., Boeve B. F., Smith G. E., Maroney-Smith M., Spychalla A. J., et al. (2015). MRS in mild cognitive impairment: early differentiation of dementia with Lewy bodies and Alzheimer’s disease. PubMed DOI PMC
Zhang X., Beaulieu J. M., Sotnikova T. D., Gainetdinov R. R., Caron M. G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. PubMed DOI
Zhang Z., Ma Z., Zou W., Guo H., Liu M., Ma Y., et al. (2019). The Appropriate Marker for Astrocytes: Comparing the Distribution and Expression of Three Astrocytic Markers in Different Mouse Cerebral Regions. PubMed DOI PMC