Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34867270
PubMed Central
PMC8633395
DOI
10.3389/fnagi.2021.731603
Knihovny.cz E-zdroje
- Klíčová slova
- MCI, MRS, astrocytes, biomarker, glia, microglia, myo-inositol, spatial memory,
- Publikační typ
- časopisecké články MeSH
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czechia
Department of Translational Research in Psychiatry Max Planck Institute of Psychiatry Munich Germany
Max Planck School of Cognition Leipzig Germany
Proteomics and Biomarkers Max Planck Institute of Psychiatry Munich Germany
Research Group Neuronal Plasticity Max Planck Institute of Psychiatry Munich Germany
Scientific Core Unit Neuroimaging Max Planck Institute of Psychiatry Munich Germany
Zobrazit více v PubMed
Aisen P., Touchon J., Amariglio R., Andrieu S., Bateman R., Breitner J., et al. (2017). EU/US/CTAD Task Force: Lessons Learned from Recent and Current Alzheimer’s Prevention Trials. J. Prevent. Alzheimer’s Dis. 116–124. 10.14283/jpad.2017.13 PubMed DOI PMC
Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7 270–279. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC
Andersen J. V., Christensen S. K., Westi E. W., Diaz-delCastillo M., Tanila H., Schousboe A., et al. (2020). Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 148:105198. 10.1016/j.nbd.2020.105198 PubMed DOI
Annear M. J., Toye C., McInerney F., Eccleston C., Tranter B., Elliott K. E., et al. (2015). What should we know about dementia in the 21st century? A Delphi consensus study. BMC Geriat. 15:5. 10.1186/s12877-015-0008-1 PubMed DOI PMC
Bachli H., Steiner M. A., Habersetzer U., Wotjak C. T. (2008). Increased water temperature renders single-housed C57BL/6J mice susceptible to antidepressant treatment in the forced swim test. Behav. Brain Res. 187 67–71. 10.1016/j.bbr.2007.08.029 PubMed DOI
Best J. G., Stagg C. J., Dennis A. (2014). “Chapter 2.5 - Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate,” in Magnetic Resonance Spectroscopy, eds Stagg C., Rothman D. (San Diego: Academic Press; ), 122–138.
Binetti G., Magni E., Padovani A., Cappa S. F., Bianchetti A., Trabucchi M. (1996). Executive dysfunction in early Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 60 91–93. 10.1136/jnnp.60.1.91 PubMed DOI PMC
Brand A., Richter-Landsberg C., Leibfritz D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15 289–298. 10.1159/000111347 PubMed DOI
Brandt J., Aretouli E., Neijstrom E., Samek J., Manning K., Albert M. S., et al. (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology 23 607–618. 10.1037/a0015851 PubMed DOI PMC
Brinks V., van der Mark M., de Kloet R., Oitzl M. (2007). Emotion and cognition in high and low stress sensitive mouse strains: a combined neuroendocrine and behavioral study in BALB/c and C57BL/6J mice. Front. Behav. Neurosci. 1 8–8. 10.3389/neuro.08.008.2007 PubMed DOI PMC
Burman O., Marsella G., Di Clemente A., Cervo L. (2018). The effect of exposure to low frequency electromagnetic fields (EMF) as an integral part of the housing system on anxiety-related behaviour, cognition and welfare in two strains of laboratory mouse. PLoS One 13:54. 10.1371/journal.pone.0197054 PubMed DOI PMC
Campisi J., Kapahi P., Lithgow G. J., Melov S., Newman J. C., Verdin E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature 571 183–192. 10.1038/s41586-019-1365-2 PubMed DOI PMC
Castellano G., Dias C. S., Foerster B., Li L. M., Covolan R. J. (2012). NAA and NAAG variation in neuronal activation during visual stimulation. Braz. J. Med. Biol. Res. 45 1031–1036. 10.1590/s0100-879x2012007500128 PubMed DOI PMC
Catani M., Cherubini A., Howard R., Tarducci R., Pelliccioli G. P., Piccirilli M., et al. (2001). (1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport 12 2315–2317. 10.1097/00001756-200108080-00007 PubMed DOI
Chen C. P., Eastwood S. L., Hope T., McDonald B., Francis P. T., Esiri M. M. (2000). Immunocytochemical study of the dorsal and median raphe nuclei in patients with Alzheimer’s disease prospectively assessed for behavioural changes. Neuropathol. Appl. Neurob. 26 347–355. 10.1046/j.1365-2990.2000.00254.x PubMed DOI
Chen S. Q., Cai Q., Shen Y. Y., Xu C. X., Zhou H., Zhao Z. (2016). Hydrogen Proton Magnetic Resonance Spectroscopy in Multidomain Amnestic Mild Cognitive Impairment and Vascular Cognitive Impairment Without Dementia. Am. J. Alzheimer’s Dis. Dement. 31 422–429. 10.1177/1533317515628052 PubMed DOI PMC
Chen S. Q., Wang P. J., Ten G. J., Zhan W., Li M. H., Zang F. C. (2009). Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice. Dement. Geriat. Cogn. Dis. 28 558–566. 10.1159/000261646 PubMed DOI PMC
Chen Z., Zhong C. (2013). Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurob. 108 21–43. 10.1016/j.pneurobio.2013.06.004 PubMed DOI
Cherix A., Larrieu T., Grosse J., Rodrigues J., McEwen B., Nasca C., et al. (2020). Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. Elife 9:e50631. 10.7554/eLife.50631 PubMed DOI PMC
Chowdhury S. M., Du X., Tolić N., Wu S., Moore R. J., Mayer M. U., et al. (2009). Identification of cross-linked peptides after click-based enrichment using sequential collision-induced dissociation and electron transfer dissociation tandem mass spectrometry. Anal. Chem. 81 5524–5532. 10.1021/ac900853k PubMed DOI PMC
Ciavardelli D., Piras F., Consalvo A., Rossi C., Zucchelli M., Di Ilio C., et al. (2016). Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects. Neurobiol. Aging 43 1–12. 10.1016/j.neurobiolaging.2016.03.005 PubMed DOI
Cowen P., Sherwood A. C. (2013). The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J. Psychopharm. 27 575–583. 10.1177/0269881113482531 PubMed DOI
Craft J. M., Watterson D. M., Marks A., Van Eldik L. J. (2005). Enhanced susceptibility of S-100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human beta-amyloid. Glia 51 209–216. 10.1002/glia.20194 PubMed DOI
Cummings J. L., Tong G., Ballard C. (2019). Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimer’s Dis. 67 779–794. 10.3233/JAD-180766 PubMed DOI PMC
Ebert T. G. (2021). On the Search for Translational Biomarkers of Mild Cognitive Impairment. Ph.D. dissertation. Munich: Technical University Munich.
Ferreira-Vieira T. H., Guimaraes I. M., Silva F. R., Ribeiro F. M. (2016). Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharm. 14 101–115. 10.2174/1570159x13666150716165726 PubMed DOI PMC
Flurkey K., Currer J. M., Harrison D. E. (2007). “The Mouse in Aging Research,” in The Mouse in Biomedical Research 2nd Edition. American College Laboratory Animal Medicine, ed. Fox J. G. (Burlington, MA: Elsevier; ), 637–672.
Francis D. D., Szegda K., Campbell G., Martin W. D., Insel T. R. (2003). Epigenetic sources of behavioral differences in mice. Nat. Neurosci. 6 445–446. 10.1038/nn1038 PubMed DOI
Francis D. D., Zaharia M. D., Shanks N., Anisman H. (1995). Stress-induced disturbances in Morris water-maze performance: interstrain variability. Physiol. Behav. 58 57–65. 10.1016/0031-9384(95)00009-8 PubMed DOI
Franczak M., Prost R. W., Antuono P. G., Mark L. P., Jones J. L., Ulmer J. L. (2007). Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J. Comp. Assist. Tomogr. 31 666–670. 10.1097/RCT.0b013e318031bc31 PubMed DOI
Fuochi S., Rigamonti M., Iannello F., Raspa M., Scavizzi F., de Girolamo P., et al. (2021). Phenotyping Spontaneous Locomotor Activity in Inbred and Outbred Mouse Strains by Using Digital Ventilated Cages. Lab. Animal. 50 215–223. 10.1038/S41684-021-00793-0 PubMed DOI
Gao F., Barker P. B. (2014). Various MRS application tools for Alzheimer disease and mild cognitive impairment. AJNR Am. J. Neuroradiol. 35 S4–S11. 10.3174/ajnr.A3944 PubMed DOI PMC
Garthe A., Kempermann G. (2013). An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front. Neurosci. 7:63. 10.3389/fnins.2013.00063 PubMed DOI PMC
Gauthier S., Reisberg B., Zaudig M., Petersen R. C., Ritchie K., Broich K., et al. (2006). Mild cognitive impairment. Lancet 367 1262–1270. 10.1016/S0140-6736(06)68542-5 PubMed DOI
Geldenhuys W. J., Van der Schyf C. J. (2011). Role of serotonin in Alzheimer’s disease: a new therapeutic target? CNS Drugs 25 765–781. 10.2165/11590190-000000000-00000 PubMed DOI
Glanville N. T., Byers D. M., Cook H. W., Spence M. W., Palmer F. B. (1989). Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim. Biophys. 1004 169–179. 10.1016/0005-2760(89)90265-8 PubMed DOI
Grady C. (2012). The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13 491–505. 10.1038/nrn3256 PubMed DOI PMC
Hampel H., Lista S., Teipel S. J., Garaci F., Nisticò R., Blennow K., et al. (2014). Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem. Pharm. 88 426–449. 10.1016/j.bcp.2013.11.009 PubMed DOI
Hendricksen M., Thomas A. J., Ferrier I. N., Ince P., O’Brien J. T. (2004). Neuropathological study of the dorsal raphe nuclei in late-life depression and Alzheimer’s disease with and without depression. Am. J. Psychiatry 161 1096–1102. 10.1176/appi.ajp.161.6.1096 PubMed DOI
Hering H., Sheng M. (2001). Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2 880–888. 10.1038/35104061 PubMed DOI
Huang W., Alexander G. E., Chang L., Shetty H. U., Krasuski J. S., Rapoport S. I., et al. (2001). Brain metabolite concentration and dementia severity in Alzheimer’s disease: a (1)H MRS study. Neurology 57 626–632. 10.1212/wnl.57.4.626 PubMed DOI
Ito D., Imai Y., Ohsawa K., Nakajima K., Fukuuchi Y., Kohsaka S. (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mole. Brain Res. 57 1–9. 10.1016/s0169-328x(98)00040-0 PubMed DOI
Johnson E. C. B., Dammer E. B., Duong D. M., Ping L., Zhou M., Yin L., et al. (2020). Large-Scale Proteomic Analysis of Alzheimer’s Disease Brain and Cerebrospinal Fluid Reveals Early Changes in Energy Metabolism Associated with Microglia and Astrocyte Activation. Nat. Med. 26 769–780. 10.1038/s41591-020-0815-6 PubMed DOI PMC
Jupp B., Sawiak S. J., van der Veen B., Lemstra S., Toschi C., Barlow R. L., et al. (2020). Diminished Myoinositol in Ventromedial Prefrontal Cortex Modulates the Endophenotype of Impulsivity. Cerebral Cortex 30 3392–3402. 10.1093/cercor/bhz317 PubMed DOI PMC
Kantarci K., Jack C. R., Jr., Xu Y. C., Campeau N. G., O’Brien P. C., Smith G. E., et al. (2000). Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology 55 210–217. 10.1212/wnl.55.2.210 PubMed DOI PMC
Kantarci K., Knopman D. S., Dickson D. W., Parisi J. E., Whitwell J. L., Weigand S. D., et al. (2008). Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248 210–220. 10.1148/radiol.2481071590 PubMed DOI PMC
Kantarci K., Weigand S. D., Przybelski S. A., Shiung M. M., Whitwell J. L., Negash S., et al. (2009). Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology 72 1519–1525. 10.1212/WNL.0b013e3181a2e864 PubMed DOI PMC
Keeler J. F., Robbins T. W. (2011). Translating cognition from animals to humans. Biochem. Pharm. 81 1356–1366. 10.1016/j.bcp.2010.12.028 PubMed DOI
Kleinknecht K. R., Bedenk B. T., Kaltwasser S. F., Grunecker B., Yen Y. C., Czisch M., et al. (2012). Hippocampus-dependent place learning enables spatial flexibility in C57BL6/N mice. Front. Behav. Neurosci. 6:87. 10.3389/fnbeh.2012.00087 PubMed DOI PMC
Lanz B., Abaei A., Braissant O., Choi I. Y., Cudalbu C., Henry P. G., et al. (2020). Magnetic resonance spectroscopy in the rodent brain: Experts’ consensus recommendations. NMR Biomed. 2020:e4325. 10.1002/nbm.4325 PubMed DOI PMC
Li J., Wu H., Liu Y., Yang L. (2020). High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp. Anim. 69 326–335. 10.1538/expanim.19-0148 PubMed DOI PMC
Lin A., Andronesi O., Bogner W., Choi I. Y., Coello E., Cudalbu C., et al. (2021). Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts’ consensus recommendations. NMR Biomed. 34:e4484. 10.1002/nbm.4484 PubMed DOI PMC
Maccioni R. B., Gonzalez A., Andrade V., Cortes N., Tapia J. P., Guzman-Martinez L. (2018). Alzheimer s Disease in the Perspective of Neuroimmunology. Open Neurol. J. 12 50–56. 10.2174/1874205X01812010050 PubMed DOI PMC
Mapstone M., Cheema A. K., Fiandaca M. S., Zhong X., Mhyre T. R., MacArthur L. H., et al. (2014). Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20 415–418. 10.1038/nm.3466 PubMed DOI PMC
Michaud T. L., Su D., Siahpush M., Murman D. L. (2017). The Risk of Incident Mild Cognitive Impairment and Progression to Dementia Considering Mild Cognitive Impairment Subtypes. Dement. Geriat. Cogn. Dis. Extra 7 15–29. 10.1159/000452486 PubMed DOI PMC
Michetti F., D’Ambrosi N., Toesca A., Puglisi M. A., Serrano A., Marchese E., et al. (2019). The S100B story: from biomarker to active factor in neural injury. J. Neurochem. 148 168–187. 10.1111/jnc.14574 PubMed DOI
Mondello S., Hayes R. L. (2015). “Chapter 16 - Biomarkers,” in Handbook of Clinical Neurology, eds Grafman J., Salazar A. M. (Amsterdam: Elsevier; ), 245–265. 10.1016/B978-0-444-52892-6.00016-7 PubMed DOI
Montgomery S. A., Thal L. J., Amrein R. (2003). Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Internat. Clin. Psychopharm. 18 61–71. 10.1097/00004850-200303000-00001 PubMed DOI
Mori T., Town T., Tan J., Yada N., Horikoshi Y., Yamamoto J., et al. (2006). Arundic Acid ameliorates cerebral amyloidosis and gliosis in Alzheimer transgenic mice. J. Pharm. Exp. Ther. 318 571–578. 10.1124/jpet.106.105171 PubMed DOI
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J.Neurosci. Methods 11 47–60. 10.1016/0165-0270(84)90007-4 PubMed DOI
Moser M. B., Moser E. I., Forrest E., Andersen P., Morris R. G. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. U S A 92 9697–9701. 10.1073/pnas.92.21.9697 PubMed DOI PMC
Mufson E. J., Counts S. E., Perez S. E., Ginsberg S. D. (2008). Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Exp. Rev. Neurother. 8 1703–1718. 10.1586/14737175.8.11.1703 PubMed DOI PMC
Nasca C., Bigio B., Lee F. S., Young S. P., Kautz M. M., Albright A., et al. (2018). Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc. Natl. Acad. Sci. U S A 115 8627–8632. 10.1073/pnas.1801609115 PubMed DOI PMC
Nasca C., Xenos D., Barone Y., Caruso A., Scaccianoce S., Matrisciano F., et al. (2013). L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc. Natl. Acad. Sci. U S A 110 4804–4809. 10.1073/pnas.1216100110 PubMed DOI PMC
Olabarria M., Noristani H. N., Verkhratsky A., Rodríguez J. J. (2011). Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mole. Neurodegen. 6:55. 10.1186/1750-1326-6-55 PubMed DOI PMC
Oz G., Nelson C. D., Koski D. M., Henry P. G., Marjanska M., Deelchand D. K., et al. (2010). Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J. Neurosci. 30 3831–3838. 10.1523/JNEUROSCI.5612-09.2010 PubMed DOI PMC
Patterson C. (2018). World Alzheimer Report 2018, The State of the Art of Dementia Research: New frontiers. London: Alzheimer’s Disease International (ADI).
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Inter. Med. 256 183–194. 10.1111/j.1365-2796.2004.01388.x PubMed DOI
Petersen R. C. (2016). Mild Cognitive Impairment. Continuum 22 404–418. 10.1212/CON.0000000000000313 PubMed DOI PMC
Pluskal T., Castillo S., Villar-Briones A., Oresic M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11:395. 10.1186/1471-2105-11-395 PubMed DOI PMC
Reed D., Bachmanov A. A., Tordoff M. G. (2007). Forty mouse strain survey of body composition. Physiol. Behav. 91 593–600. 10.1016/j.physbeh.2007.03.026 PubMed DOI PMC
Reichel J. M., Bedenk B. T., Czisch M., Wotjak C. T. (2017). Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice. Hippocampus 27 28–35. 10.1002/hipo.22668 PubMed DOI
Reichel J. M., Nissel S., Rogel-Salazar G., Mederer A., Käfer K., Bedenk B. T., et al. (2014). Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus. Front. Behav. Neurosci. 8:452. 10.3389/fnbeh.2014.00452 PubMed DOI PMC
Robinson S. R. (2000). Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem. Internat. 36 471–482. 10.1016/s0197-0186(99)00150-3 PubMed DOI
Ruediger S., Spirig D., Donato F., Caroni P. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. Nat. Neurosci. 15 1563–1571. 10.1038/nn.3224 PubMed DOI
Schroeter M. L., Steiner J. (2009). Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mole. Psychiatry 14 235–237. 10.1038/mp.2008.85 PubMed DOI
Shapiro L. A., Bialowas-McGoey L. A., Whitaker-Azmitia P. M. (2010). Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer’s Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc. Psychiatry Neurol. 2010:153657. 10.1155/2010/153657 PubMed DOI PMC
Sigurdsson T., Duvarci S. (2015). Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. Front. Syst. Neurosci. 9:190. 10.3389/fnsys.2015.00190 PubMed DOI PMC
Sturrock A., Laule C., Wyper K., Milner R. A., Decolongon J., Dar Santos R., et al. (2015). A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. Move. Dis. Offi. J. Move. Dis. Soc. 30 393–401. 10.1002/mds.26118 PubMed DOI
Thoeringer C. K., Pfeiffer U. J., Rammes G., Pamplona F. A., Moosmang S., Wotjak C. T. (2010). Early life environment determines the development of adult phobic-like fear responses in BALB/cAnN mice. Genes Brain Behav. 9 947–957. 10.1111/j.1601-183X.2010.00634.x PubMed DOI
Tucker A. M., Stern Y. (2011). Cognitive reserve in aging. Curr. Alzheimer Res. 8 354–360. 10.2174/156720511795745320 PubMed DOI PMC
Van Dam D., Lenders G., De Deyn P. P. (2006). Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. Neurobiol. Learn. Memory 85 164–172. 10.1016/j.nlm.2005.09.006 PubMed DOI
Van der Flier W. M., Scheltens P. (2005). Epidemiology and risk factors of dementia. J. Neurol. Neurosurg. Psychiatry 76:5. 10.1136/JNNP.2005.082867 PubMed DOI PMC
Voevodskaya O., Sundgren P. C., Strandberg O., Zetterberg H., Minthon L., Blennow K., et al. (2016). Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology 86 1754–1761. 10.1212/WNL.0000000000002672 PubMed DOI PMC
Wang H., Tan L., Wang H. F., Liu Y., Yin R. H., Wang W. Y., et al. (2015). Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Alzheimer’s Dis 46 1049–1070. 10.3233/JAD-143225 PubMed DOI
Wang Z., Zhao C., Yu L., Zhou W., Li K. (2009). Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol. 50 312–319. 10.1080/02841850802709219 PubMed DOI
Watanabe T., Shiino A., Akiguchi I. (2010). Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. Dement. Geriat. Cogn. Dis. 30 71–77. 10.1159/000318750 PubMed DOI
Weller J., Budson A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:F1000. 10.12688/f1000research.14506.1 PubMed DOI PMC
Whalley L. J., Deary I. J., Appleton C. L., Starr J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Res. Rev. 3 369–382. 10.1016/j.arr.2004.05.001 PubMed DOI
White H. L., Scates P. W. (1990). Acetyl-L-carnitine as a precursor of acetylcholine. Neurochem. Res. 15 597–601. 10.1007/BF00973749 PubMed DOI
Whitehouse P. J., Price D. L., Clark A. W., Coyle J. T., DeLong M. R. (1981). Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10 122–126. 10.1002/ana.410100203 PubMed DOI
Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215 1237–1239. 10.1126/science.7058341 PubMed DOI
Xu C. J., Wang J. L., Jing P., Min L. (2019). Tph2 Genetic Ablation Contributes to Senile Plaque Load and Astrogliosis in APP/PS1 Mice. Curr. Alzheimer Res. 16 219–232. 10.2174/1567205016666190301110110 PubMed DOI
Xu H., Zhang H., Zhang J., Huang Q., Shen Z., Wu R. (2016). Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci. Biobehav. Rev. 71 563–577. 10.1016/j.neubiorev.2016.09.027 PubMed DOI
Yao J., Irwin R. W., Zhao L., Nilsen J., Hamilton R. T., Brinton R. D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U S A 106 14670–14675. 10.1073/pnas.0903563106 PubMed DOI PMC
Yoshida M., Goto K., Watanabe S. (2001). Task-dependent strain difference of spatial learning in C57BL/6N and BALB/c mice. Physiol. Behav. 73 37–42. 10.1016/s0031-9384(01)00419-x PubMed DOI
Zaharia M. D., Kulczycki J., Shanks N., Meaney M. J., Anisman H. (1996). The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors. Psychopharmacology 128 227–239. 10.1007/s002130050130 PubMed DOI
Zhang B., Ferman T. J., Boeve B. F., Smith G. E., Maroney-Smith M., Spychalla A. J., et al. (2015). MRS in mild cognitive impairment: early differentiation of dementia with Lewy bodies and Alzheimer’s disease. J. Neuroimag. 25 269–274. 10.1111/jon.12138 PubMed DOI PMC
Zhang X., Beaulieu J. M., Sotnikova T. D., Gainetdinov R. R., Caron M. G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217. 10.1126/science.1097540 PubMed DOI
Zhang Z., Ma Z., Zou W., Guo H., Liu M., Ma Y., et al. (2019). The Appropriate Marker for Astrocytes: Comparing the Distribution and Expression of Three Astrocytic Markers in Different Mouse Cerebral Regions. BioMed. Res. Internat. 2019:9605265. 10.1155/2019/9605265 PubMed DOI PMC