Site index as a predictor of the effect of climate warming on boreal tree growth
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
34873797
DOI
10.1111/gcb.16030
Knihovny.cz E-resources
- Keywords
- black spruce, boreal forests, climate normals, height growth, jack pine, productivity, surficial deposits,
- MeSH
- Pinus * physiology MeSH
- Climate Change MeSH
- Retrospective Studies MeSH
- Picea * physiology MeSH
- Trees MeSH
- Taiga MeSH
- Publication type
- Journal Article MeSH
The boreal forest represents the terrestrial biome most heavily affected by climate change. However, no consensus exists regarding the impacts of these changes on the growth of tree species therein. Moreover, assessments of young tree responses in metrics transposable to forest management remain scarce. Here, we assessed the impacts of climate change on black spruce (Picea mariana [Miller] BSP) and jack pine (Pinus banksiana Lambert) growth, two dominant tree species in boreal forests of North America. Starting with a retrospective analysis including data from 2591 black spruces and 890 jack pines, we forecasted trends in 30-year height growth at the transitions from closed to open boreal coniferous forests in Québec, Canada. We considered three variables: (1) height growth, rarely used, but better-reflecting site potential than other growth proxies, (2) climate normals corresponding to the growth period of each stem, and (3) site type (as a function of texture, stoniness, and drainage), which can modify the effects of climate on tree growth. We found a positive effect of vapor pressure deficit on the growth of both species, although the effect on black spruce leveled off. For black spruce, temperatures had a positive effect on the height at 30 years, which was attenuated when and where climatic conditions became drier. Conversely, drought had a positive effect on height under cold conditions and a negative effect under warm conditions. Spruce growth was also better on mesic than on rocky and sub-hydric sites. For portions of the study areas with projected future climate within the calibration range, median height-change varied from 10 to 31% for black spruce and from 5 to 31% for jack pine, depending on the period and climate scenario. As projected increases are relatively small, they may not be sufficient to compensate for potential increases in future disturbances like forest fires.
Centre d'étude de la forêt Université du Québec à Montréal Montréal Québec Canada
Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre Québec Québec Canada
See more in PubMed
Anyomi, K. A., Raulier, F., Mailly, D., Girardin, M. P., & Bergeron, Y. (2012). Using height growth to model local and regional response of trembling aspen (Populus tremuloides Michx.) to climate within the boreal forest of western Québec. Ecological Modelling, 243, 123-132. https://doi.org/10.1016/j.ecolmodel.2012.06.020
Babst, F., Bodesheim, P., Charney, N., Friend, A. D., Girardin, M. P., Klesse, S., Moore, D. J. P., Seftigen, K., Björklund, J., Bouriaud, O., Dawson, A., DeRose, R. J., Dietze, M. C., Eckes, A. H., Enquist, B., Frank, D. C., Mahecha, M. D., Poulter, B., Record, S., … Evans, M. E. K. (2018). When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197, 1-20. https://doi.org/10.1016/j.quascirev.2018.07.009
Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Walsh, J., & Melillo, J. (2009). Assessing the response of area burned to changing climate in western boreal North America using a multivariate adaptive regression splines (MARS) approach. Global Change Biology, 15(3), 578-600. https://doi.org/10.1111/j.1365-2486.2008.01679.x
Baltzer, J. L., Day, N. J., Walker, X. J., Greene, D., Mack, M. C., Alexander, H. D., Arseneault, D., Barnes, J., Bergeron, Y., Boucher, Y., Bourgeau-Chavez, L., Brown, C. D., Carriere, S., Howard, B., Gauthier, S., Parisien, M.-A., Reida, K. A., Rogers, B. M., Roland, C., … Johnstone, J. F. (2021). Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 118. https://doi.org/10.1073/pnas.2024872118
Barbosa, A. M. (2015). fuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods in Ecology and Evolution, 6(7), 853-858. https://doi.org/10.1111/2041-210X.12372
Barton, K. (2020). MuMIn-Model selection and model averaging based on information criteria (AICc and alike). R Package Version, 1(43), 17. https://CRAN.R-project.org/package=MuMIn
Beck, P. S. A., Juday, G. P., Alix, C., Barber, V. A., Winslow, S. E., Sousa, E. E., Heiser, P., Herriges, J. D., & Goetz, S. J. (2011). Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters, 14(4), 373-379. https://doi.org/10.1111/j.1461-0248.2011.01598.x
Boulanger, Y., Gauthier, S., & Burto, P. J. (2014). A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research, 44(4), 365-376. https://doi.org/10.1139/cjfr-2013-0372
Boulanger, Y., Girardin, M. P., Bernier, P. Y., Gauthier, S., Beaudoin, A., & Guindon, L. (2017). Changes in mean forest age in Canada’s forests could limit future increases in area burned but compromise potential harvestable conifer volumes. Canadian Journal of Forest Research, 47(6), 755-764. https://doi.org/10.1139/cjfr-2016-0445
Brewer, M. J., Butler, A., & Cooksley, S. L. (2016). The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution, 7(6), 679-692. https://doi.org/10.1111/2041-210X.12541
Burns, R. M., & Honkala, B. H. (1990). Silvics of North America. Agriculture Handbook (Washington).
Cavard, X., Bergeron, Y., Chen, H. Y., & Pare, D. (2010). Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Canadian Journal of Forest Research, 40(1), 37-47. https://doi.org/10.1139/X09-171
Charney, N. D., Babst, F., Poulter, B., Record, S., Trouet, V. M., Frank, D., Enquist, B. J., & Evans, M. E. K. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters, 19, 1119-1128. https://doi.org/10.1111/ele.12650
Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y., & Hély, C. (2019). Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landscape Ecology, 34(2), 403-426. https://doi.org/10.1007/s10980-019-00780-4
Chavardès, R. D., Gennaretti, F., Grondin, P., Cavard, X., Morin, M., & Bergeron, Y. (2021). Role of mixed-species stands in attenuating the vulnerability of boreal forests to climate change and insect epidemics. Frontiers in Plant Science, 12(658880), 1-12. https://doi.org/10.3389/fpls.2021.658880
Chen, H. Y. H., Luo, Y., Reich, P. B., Searle, E. B., & Biswas, S. R. (2016). Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. Ecology Letters, 19(9), 1150-1158. https://doi.org/10.1111/ele.12653
Chmielewski, F.-M., & Rötzer, T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108(2), 101-112. https://doi.org/10.1016/S0168-1923(01)00233-7
D’Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Côté, B., & Pederson, N. (2016). Northeastern North America as a potential refugium for boreal forests in a warming climate. Science, 352(6292), 1452-1455. https://doi.org/10.1126/science.aaf4951
D’Orangeville, L., Houle, D., Duchesne, L., Phillips, R. P., Bergeron, Y., & Kneeshaw, D. (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 9(1), 3213. https://doi.org/10.1038/s41467-018-05705-4
de Groot, W. J., Flannigan, M. D., & Cantin, A. S. (2013). Climate change impacts on future boreal fire regimes. Forest Ecology and Management, 294, 35-44. https://doi.org/10.1016/j.foreco.2012.09.027
Duchesne, L., Houle, D., Ouimet, R., Caldwell, L., Gloor, M., & Brienen, R. (2019). Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-43243-1
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., & Zadeh, N. (2012). GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19), 6646-6665. https://doi.org/10.1175/JCLI-D-11-00560.1
ESRI. (2016). ArcGIS Desktop: Release 10.4. Environmental Systems Research Institute.
Fortin, M., Bernier, S., Saucier, J. P., & Labbé, F. (2009). Une Relation Hauteur-Diamètre Tenant Compte de L’influence de la Station et du Climat Pour 20 Espèces Commerciales du Québec. [A height-diameter relationship that takes into account the influence of site conditions and climate for 20 commercial species of Québec]. Government of Québec, Ministry of Natural Resources, Forest Research Branch, General Technical Report 153.
Fortin, M., Schneider, R., & Saucier, J. P. (2013). Volume and error variance estimation using integrated stem taper models. Forest Science, 59(3), 345-358. https://doi.org/10.5849/forsci.11-146
Frolking, S. (1997). Sensitivity of spruce/moss boreal forest net ecosystem productivity to seasonal anomalies in weather. Journal of Geophysical Research, 102(D24), 29053-29064. https://doi.org/10.1029/96JD03707
Frolking, S., Goulden, M., Wofsy, S., Fan, S.-M., Sutton, D., Munger, J., Bazzaz, A. M., Daube, B., Crill, P. M., Aber, J. D., Band, L., Wang, X., Savage, K., Moore, T., & Harriss, R. (1996). Modelling temporal variability in the carbon balance of a spruce/moss boreal forest. Global Change Biology, 2, 343-366. https://doi.org/10.1111/j.1365-2486.1996.tb00086.x
Gauthier, S., Bernier, P., Boulanger, Y., Guo, J., Guindon, L., Beaudoin, A., & Boucher, D. (2015a). Vulnerability of timber supply to projected changes in fire regime in Canada’s managed forests. Canadian Journal of Forest Research, 45(11), 1439-1447. https://doi.org/10.1139/cjfr-2015-0079
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., & Schepaschenko, D. G. (2015b). Boreal forest health and global change. Science, 349(6250), 819-822. https://doi.org/10.1126/science.aaa9092
Gauthier, S., Raulier, F., Ouzennou, H., & Saucier, J. P. (2015c). Strategic analysis of forest vulnerability to risk related to fire: an example from the coniferous boreal forest of Quebec. Canadian Journal of Forest Research, 45(5), 553-565. https://doi.org/10.1139/cjfr-2014-0125
Girard, F., Payette, S., & Gagnon, R. (2008). Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. Journal of Biogeography, 35(3), 529-537. https://doi.org/10.1111/j.1365-2699.2007.01816.x
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E., Metsaranta, J. M., De Jong, R., Frank, D. C., Esper, J., Büntgen, U., Guo, X. J., & Bhatti, J. (2016a). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113(52), E8406-E8414. https://doi.org/10.1073/pnas.1610156113
Girardin, M. P., Guo, X. J., Bernier, P. Y., Raulier, F., & Gauthier, S. (2012). Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences, 9, 2523-2536. https://doi.org/10.5194/bg-9-2523-2012
Girardin, M. P., Guo, X. J., Metsaranta, J., Gervais, D., Campbell, E., Arsenault, A., Isaac-Renton, M., Harvey, J. E., Bhatti, J., & Hogg, E. H. (2021a). A national tree-ring data repository for Canadian forests (CFS-TRenD): Structure, synthesis, and applications. Environmental Reviews, 29(2), 225-241. https://doi.org/10.1139/er-2020-0099
Girardin, M. P., Hogg, E. H., Bernier, P. Y., Kurz, W. A., Guo, X. J., & Cyr, G. (2016b). Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biology, 22(2), 627-643. https://doi.org/10.1111/gcb.13072
Girardin, M. P., Isabel, N., Guo, X. J., Lamothe, M., Duchesne, I., & Lenz, P. (2021b). Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nature Communications, 12, 1169. https://doi.org/10.1038/s41467-021-21222-3
Girardin, M. P., Raulier, F., Bernier, P. Y., & Tardif, J. C. (2008). Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches. Ecological Modelling, 213(2), 209-228. https://doi.org/10.1016/j.ecolmodel.2007.12.010
Girardin, M. P., & Wotton, B. M. (2009). Summer moisture and wildfire risks across Canada. Journal of Applied Meteorology and Climatology, 48, 517-533. https://doi.org/10.1175/2008JAMC1996.1
Gouvernement du Québec. (2019). Vegetation zones and bioclimatic domains in Québec. Québec (Province). https://mffp.gouv.qc.ca/forets/inventaire/inventaire-zones.jsp
Grondin, P., Noël, J., Hotte, D., Tardif, P., Lapointe, C., Végiard, S., Auger, I., Saucier, J. P., & Bergeron, Y. (2000). Croissance potentielle en hauteur et dynamique des espèces forestières sur les principaux types écologiques des régions écologiques 5a et 6a (Abitibi). Rapport Interne, 461.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566. https://doi.org/10.1111/nph.16485
Hember, R. A., Kurz, W. A., & Coops, N. C. (2017). Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Global Biogeochemical Cycles, 31(1), 134-158. Scopus. https://doi.org/10.1002/2016gb005459
Houle, D., Moore, J.-D., Ouimet, R., & Marty, C. (2014). Tree species partition N uptake by soil depth in boreal forests. Ecology, 95(5), 1127-1133. https://doi.org/10.1890/14-0191.1
Housset, J. M., Girardin, M. P., Baconnet, M., Carcaillet, C., & Bergeron, Y. (2015). Unexpected warming-induced growth decline in Thuja occidentalis at its northern limits in North America. Journal of Biogeography, 42(7), 1233-1245. https://doi.org/10.1111/jbi.12508
Huang, S., Price, D., & Titus, S. J. (2000). Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129(1-3), 125-141. https://doi.org/10.1016/S0378-1127(99)00151-6
Huang, S., Titus, S. J., & Wiens, D. P. (1992). Comparison of nonlinear height-diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22(9), 1297-1304. https://doi.org/10.1139/x92-172
Huang, S., Wiens, D. P., Yang, Y., Meng, S. X., & Vanderschaaf, C. L. (2009). Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. Forest Ecology and Management, 258(7), 1235-1247. https://doi.org/10.1016/j.foreco.2009.06.017
Ibáñez, I., Primack, R. B., Miller-Rushing, A. J., Ellwood, E., Higuchi, H., Lee, S. D., Hiromi, K., & Silander, J. A. (2010). Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3247-3260. https://doi.org/10.1098/rstb.2010.0120
IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
Jarvis, P., & Linder, S. (2000). Constraints to growth of boreal forests. Nature, 405(6789), 904-905. https://doi.org/10.1038/35016154
Jobidon, R., Bergeron, Y., Robitaille, A., Raulier, F., Gauthier, S., Imbeau, L., Saucier, J.-P., & Boudreault, C. (2015). A biophysical approach to delineate a northern limit to commercial forestry: the case of Quebec’s boreal forest. Canadian Journal of Forest Research, 45(5), 515-528. https://doi.org/10.1139/cjfr-2014-0260
Klesse, S., DeRose, R. J., Babst, F., Black, B., Anderegg, L. D. L., Axelson, J., Ettinger, A., Griesbauer, H., Guiterman, C. H., & Harley, G. (2020). Continental-scale tree-ring based projection of Douglas-fir growth-Testing the limits of space-for-time substitution. Global Change Biology, 26, 5146-5163. https://doi.org/10.1111/gcb.15170
Kurz, W. A., Shaw, C. H., Boisvenue, C., Stinson, G., Metsaranta, J., Leckie, D., Dyk, A., Smyth, C., & Neilson, E. T. (2013). Carbon in Canada’s boreal forest-A synthesis. Environmental Reviews, 21(4), 260-292.
Laflèche, V., Bernier, S., Saucier, J.-P., & Gagné, C. (2013). Indices de qualité de station des principales essences commerciales en fonction des types écologiques du Québec méridional. Ministère des Ressources naturelles, Direction des inventaires forestiers.
Landsberg, J., & Sands, P. (2011). Physiological ecology of forest production: principles, processes and models, Vol. 4. Elsevier/Academic Press Amsterdam.
Mansuy, N., Gauthier, S., Robitaille, A., & Bergeron, Y. (2010). The effects of surficial deposit-drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. International Journal of Wildland Fire, 19(8), 1083-1098. https://doi.org/10.1071/WF09144
Marchand, W., Girardin, M. P., Hartmann, H., Gauthier, S., & Bergeron, Y. (2019). Taxonomy, together with ontogeny and growing conditions, drives needleleaf species’ sensitivity to climate in boreal North America. Global Change Biology, 25(8), 2793-2809. https://doi.org/10.1111/gcb.14665
Marchand, W., Girardin, M. P., Hartmann, H., Lévesque, M., Gauthier, S., & Bergeron, Y. (2021). Contrasting life-history traits of black spruce and jack pine influence their physiological response to drought and growth recovery in northeastern boreal Canada. Science of the Total Environment, 148514, https://doi.org/10.1016/j.scitotenv.2021.148514
McCarthy, M. C., & Enquist, B. J. (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21(4), 713-720. https://doi.org/10.1111/j.1365-2435.2007.01276.x
McKenney, D. W., Pedlar, J. H., Rood, R. B., & Price, D. (2011). Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 17(8), 2720-2730. https://doi.org/10.1111/j.1365-2486.2011.02413.x
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213. https://doi.org/10.1007/s10584-011-0156-z
Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397(6721), 659. https://doi.org/10.1038/17709
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., … Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
Messaoud, Y., & Chen, H. Y. H. (2011). The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One, 6(2), e14691. https://doi.org/10.1371/journal.pone.0014691
Monserud, R. A. (1984). Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science, 30(4), 943-965. https://doi.org/10.1093/forestscience/30.4.943
Moreau, G., Chagnon, C., Auty, D., Caspersen, J., & Achim, A. (2020). Impacts of climatic variation on the growth of black spruce across the forest-tundra ecotone: Positive effects of warm growing seasons and heat waves are offset by late spring frosts. Frontiers in Forests and Global Change, 3, 613523. https://doi.org/10.3389/ffgc.2020.613523
Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. https://doi.org/10.1093/jxb/erq438
Newton, P. F., & Amponsah, I. G. (2007). Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247(1-3), 149-166. https://doi.org/10.1016/j.foreco.2007.04.029
Nothdurft, A., Wolf, T., Ringeler, A., Böhner, J., & Saborowski, J. (2012). Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. Forest Ecology and Management, 279, 97-111. https://doi.org/10.1016/j.foreco.2012.05.018
Oboite, F. O., & Comeau, P. G. (2019). Competition and climate influence growth of black spruce in western boreal forests. Forest Ecology and Management, 443, 84-94. https://doi.org/10.1016/j.foreco.2019.04.017
Oboite, F. O., & Comeau, P. G. (2021). Climate sensitive growth models for predicting diameter growth of western Canadian boreal tree species. Forestry: An International Journal of Forest Research, 94(3), 363-373. https://doi.org/10.1093/forestry/cpaa039
Paquin, R., Margolis, H. A., Doucet, R., & Coyea, M. R. (1999). Comparison of growth and physiology of layers and naturally established seedlings of black spruce in a boreal cutover in Quebec. Canadian Journal of Forest Research, 29(1), 1-8. https://doi.org/10.1139/x98-171
Payette, S., Bhiry, N., Delwaide, A., & Simard, M. (2000). Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Canadian Journal of Forest Research, 30(2), 288-305. https://doi.org/10.1139/x99-207
Pedlar, J. H., & McKenney, D. W. (2017). Assessing the anticipated growth response of northern conifer populations to a warming climate. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/srep43881
Prescott, C. E., Zabek, L. M., Staley, C. L., & Kabzems, R. (2000). Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30(11), 1742-1750. https://doi.org/10.1139/x00-097
Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M. D., Fleming, R. A., Hogg, E. H., Girardin, M. P., Lakusta, T., Johnston, M., McKenney, D. W., Pedlar, J. H., Stratton, T., Sturrock, R. N., Thompson, I. D., Trofymow, J. A., & Venier, L. A. (2013). Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environmental Reviews, 21(4), 322-365. https://doi.org/10.1139/er-2013-0042
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rapanoela, R., Raulier, F., & Gauthier, S. (2016). Regional instability in the abundance of open stands in the boreal forest of Eastern Canada. Forests, 7(5), 103. https://doi.org/10.3390/f7050103
Régnière, J., Saint-Amant, R., Béchard, A., & Moutaoufik, A. (2017). BIOSIM 11-user’s manual. Natural Resources Canada, Canadian Forest Services, Laurentian Forestry Center.
Saucier, J. P., Robitaille, A., Grondin, P., Bergeron, Y., & Gosselin, J. (2011). Les régions écologiques du Québec méridional. Ministère des Ressources Naturelles et de la Faune, Direction des Inventaire Forestiers.
Schneider, R., Fortin, M., & Saucier, J. P. (2013). Équations de défilement en forêt naturelle pour les principales essences commerciales du Québec. Gouvernement du Québec. Direction de la recherche forestière.
Schneider, R., Franceschini, T., Fortin, M., & Saucier, J. P. (2018). Climate-induced changes in the stem form of 5 North American tree species. Forest Ecology and Management, 427, 446-455. https://doi.org/10.1016/j.foreco.2017.12.026
Seymour, R. S., & Fajvan, M. A. (2001). Influence of prior growth suppression and soil on red spruce site index. Northern Journal of Applied Forestry, 18(2), 55-62. https://doi.org/10.1093/njaf/18.2.55
Sharma, M. (2021). Climate effects on jack pine and black spruce productivity in natural origin mixed stands and site index conversion equations. Trees, Forests and People, 5, 100089. https://doi.org/10.1016/j.tfp.2021.100089
Sharma, M., & Parton, J. (2007). Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249(3), 187-198. https://doi.org/10.1016/j.foreco.2007.05.006
Sharma, M., & Zhang, S. Y. (2004). Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management, 198(1-3), 39-53. https://doi.org/10.1016/j.foreco.2004.03.035
Silva, L. C. R., Anand, M., & Leithead, M. D. (2010). Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS One, 5(7), Scopus. https://doi.org/10.1371/journal.pone.0011543
Simard, M., Lecomte, N., Bergeron, Y., Bernier, P. Y., & Paré, D. (2007). Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications, 17(6), 1619-1637. https://doi.org/10.1890/06-1795.1
Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J. P., & Bergeron, Y. (2019). Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Canadian Journal of Forest Research, 49(6), 680-691. https://doi.org/10.1139/cjfr-2018-0278
Spurr, S. H., & Barnes, B. V. (1973). Forest ecology, 2nd ed. Ronald Press Company.
Subedi, N., & Sharma, M. (2013). Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Global Change Biology, 19, 505-516. https://doi.org/10.1111/gcb.12033
Terrier, A., Girardin, M. P., Périé, C., Legendre, P., & Bergeron, Y. (2013). Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecological Applications, 23(1), 21-35. https://doi.org/10.1890/12-0425.1
Van Wagner, C. E., & Forest, P. (1987). Development and structure of the canadian forest fireweather index system. Canadian Forestry Service, Forestry Technical Report.
Wang, X., Parisien, M. A., Taylor, S. W., Candau, J. N., Stralberg, D., Marshall, G. A., Little, J. M., & Flannigan, M. D. (2017). Projected changes in daily fire spread across Canada over the next century. Environmental Research Letters, 12(2), 25005. https://doi.org/10.1088/1748-9326/aa5835
Way, D. A., & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 30(6), 669-688. https://doi.org/10.1093/treephys/tpq015
Way, D. A., & Sage, R. F. (2008). Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) BSP]. Global Change Biology, 14(3), 624-636. https://doi.org/10.1111/j.1365-2486.2007.01513.x
Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association, 111(516), 1548-1563. https://doi.org/10.1080/01621459.2016.1180986
Wotton, B. M., Nock, C. A., & Flannigan, M. D. (2010). Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire, 19(3), 253-271. https://doi.org/10.1071/WF09002
Zeide, B., & Vanderschaaf, C. (2002). The effect of density on the height-diameter relationship. In Proceedings of the eleventh biennial southern silvicultural research conference. General Technical Reports SRS-48. USDA. Asheville, NC, EEUU, 463-466.
Zhang, K., Kimball, J. S., Hogg, E. H., Zhao, M., Oechel, W. C., Cassano, J. J., & Running, S. W. (2008). Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. Journal of Geophysical Research: Biogeosciences, 113(3). https://doi.org/10.1029/2007jg000621