Full-Range Optical Imaging of Planar Collagen Fiber Orientation Using Polarized Light Microscopy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34877357
PubMed Central
PMC8645375
DOI
10.1155/2021/6879765
Knihovny.cz E-zdroje
- MeSH
- Achillova šlacha metabolismus MeSH
- algoritmy MeSH
- extracelulární matrix metabolismus MeSH
- kolagen metabolismus MeSH
- mikroskopie metody MeSH
- optické zobrazování metody MeSH
- počítačové zpracování obrazu metody MeSH
- polarizační mikroskopie metody MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen MeSH
A novel method for semiautomated assessment of directions of collagen fibers in soft tissues using histological image analysis is presented. It is based on multiple rotated images obtained via polarized light microscopy without any additional components, i.e., with just two polarizers being either perpendicular or nonperpendicular (rotated). This arrangement breaks the limitation of 90° periodicity of polarized light intensity and evaluates the in-plane fiber orientation over the whole 180° range accurately and quickly. After having verified the method, we used histological specimens of porcine Achilles tendon and aorta to validate the proposed algorithm and to lower the number of rotated images needed for evaluation. Our algorithm is capable to analyze 5·105 pixels in one micrograph in a few seconds and is thus a powerful and cheap tool promising a broad application in detection of collagen fiber distribution in soft tissues.
Zobrazit více v PubMed
Fratzl P. Colagen . Springer; 2008. Collagen: Structure and Mechanics, an Introduction; pp. 1–13. DOI
Sassani S. G., Kakisis J., Tsangaris S., Sokolis D. P. Layer-dependent wall properties of abdominal aortic aneurysms: experimental study and material characterization. Journal of the Mechanical Behavior of Biomedical Materials . 2015;49:141–161. doi: 10.1016/j.jmbbm.2015.04.027. PubMed DOI
Vande Geest J. P., Sacks M. S., Vorp D. A. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics . 2006;39(7):1324–1334. doi: 10.1016/j.jbiomech.2005.03.003. PubMed DOI
Gasser T. C., Gallinetti S., Xing X., Forsell C., Swedenborg J., Roy J. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics. Acta Biomaterialia . 2012;8(8):3091–3103. doi: 10.1016/j.actbio.2012.04.044. PubMed DOI
Sokolis D. P., Kefaloyannis E. M., Kouloukoussa M., Marinos E., Boudoulas H., Karayannacos P. E. A structural basis for the aortic stress-strain relation in uniaxial tension. Journal of Biomechanics . 2006;39(9):1651–1662. doi: 10.1016/j.jbiomech.2005.05.003. PubMed DOI
Sassani S. G., Tsangaris S., Sokolis D. P. Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. Journal of Biomechanics . 2015;48(14):3757–3765. doi: 10.1016/j.jbiomech.2015.08.028. PubMed DOI
Holzapfel G. A., Niestrawska J. A., Ogden R. W., Reinisch A. J., Schriefl A. J. Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of The Royal Society Interface . 2015;12(106) doi: 10.1098/rsif.2015.0188. PubMed DOI PMC
Akyildiz A. C., Speelman L., Gijsen F. J. H. Mechanical properties of human atherosclerotic intima tissue. Journal of Biomechanics . 2014;47(4):773–783. doi: 10.1016/j.jbiomech.2014.01.019. PubMed DOI
Hoffman A. H., Teng Z., Zheng J., et al. Stiffness properties of adventitia , media , and full thickness human atherosclerotic carotid arteries in the axial and circumferential directions. Journal of Biomechanical Engineering . 2017;139(12) doi: 10.1115/1.4037794. PubMed DOI PMC
Polzer S., Gasser T. C., Novak K., et al. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomaterialia . 2015;14:133–145. doi: 10.1016/j.actbio.2014.11.043. PubMed DOI
Guinier A., Fournet G., Yudowitch K. L. Small-Angle Scattering of X-Rays . Wiley New York: Wiley; 1955.
Gaul R. T., Nolan D. R., Lally C. Collagen fibre characterisation in arterial tissue under load using SALS. Journal of the Mechanical Behavior of Biomedical Materials . 2017;75:359–368. doi: 10.1016/j.jmbbm.2017.07.036. PubMed DOI
Schrauwen J. T. C., Vilanova A., Rezakhaniha R., Stergiopulos N., van de Vosse F. N., Bovendeerd P. H. M. A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia. Journal of Structural Biology . 2012;180(2):335–342. doi: 10.1016/j.jsb.2012.06.007. PubMed DOI
Rezakhaniha R., Agianniotis A., Schrauwen J. T. C., et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology . 2012;11(3-4):461–473. doi: 10.1007/s10237-011-0325-z. PubMed DOI
Tsamis A., Phillippi J. A., Koch R. G., et al. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. Journal of Biomechanics . 2013;46(16):2787–2794. doi: 10.1016/j.jbiomech.2013.09.003. PubMed DOI PMC
Boerboom R. A., Krahn K. N., Megens R. T. A., van Zandvoort M. A. M. J., Merkx M., Bouten C. V. C. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. Journal of Structural Biology . 2007;159(3):392–399. doi: 10.1016/j.jsb.2007.04.008. PubMed DOI
Georgiou E., Theodossiou T., Hovhannisyan V., Politopoulos K., Rapti G. S., Yova D. Second and third optical harmonic generation in type I collagen, by nanosecond laser irradiation, over a broad spectral region. Optics Communication . 2000;176(1-3):253–260. doi: 10.1016/S0030-4018(00)00504-6. DOI
Tanaka Y., Hase E., Fukushima S., et al. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin. Biomedical Optics Express . 2014;5(4):p. 1099. doi: 10.1364/BOE.5.001099. PubMed DOI PMC
Massoumian F., Juškaitis R., Neil M. A. A., Wilson T. Quantitative polarized light microscopy. Journal of Microscopy . 2003;209(1):13–22. doi: 10.1046/j.1365-2818.2003.01095.x. PubMed DOI
Low J. C. M., Ober T. J., McKinley G. H., Stankovic K. M. Quantitative polarized light microscopy of human cochlear sections. Biomedical Optics Express . 2015;6(2):p. 599. doi: 10.1364/BOE.6.000599. PubMed DOI PMC
Kalwani N. M., Ong C. A., Lysaght A. C., Haward S. J., McKinley G. H., Stankovic K. M. Quantitative polarized light microscopy of unstained mammalian cochlear sections. Journal of Biomedical Optics . 2013;18(2) doi: 10.1117/1.JBO.18.2.026021. PubMed DOI PMC
Ayres C. E., Jha B. S., Meredith H., et al. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. Journal of Biomaterials Science. Polymer Edition . 2008;19(5):603–621. doi: 10.1163/156856208784089643. PubMed DOI
Polzer S., Gasser T. C., Forsell C., et al. Automatic identification and validation of planar collagen organization in the aorta wall with application to abdominal aortic aneurysm. Microscopy and Microanalysis . 2013;19:698–705. doi: 10.1017/S1431927613013251. PubMed DOI
McLean J. P., Gan Y., Lye T. H., Qu D., Lu H. H., Hendon C. P. High-speed collagen fiber modeling and orientation quantification for optical coherence tomography imaging. Optics Express . 2019;27(10) doi: 10.1364/OE.27.014457. PubMed DOI PMC
Finlay H. M., Whittaker P., Canham P. B. Collagen organization in the branching region of human brain arteries. Stroke . 1998;29(8):1595–1601. doi: 10.1161/01.STR.29.8.1595. PubMed DOI
Rowe A. J., Finlay H. M., Canham P. B. Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. Journal of Vascular Research . 2003;40(4):406–415. doi: 10.1159/000072831. PubMed DOI
Sáez P., García A., Peña E., Gasser T. C., Martínez M. A. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery. Acta Biomaterialia . 2016;33:183–193. doi: 10.1016/j.actbio.2016.01.030. PubMed DOI
Novak K., Polzer S., Tichy M., Bursa J. Automatic evaluation of collagen fiber directions from polarized light microscopy images. Microscopy and Microanalysis . 2015;21(4):863–875. doi: 10.1017/S1431927615000586. PubMed DOI
Oldenbourg R., Mei G. New polarized light microscope with precision universal compensator. Journal of Microscopy . 1995;180(2):140–147. doi: 10.1111/j.1365-2818.1995.tb03669.x. PubMed DOI
Oldenbourg R. Analysis of microtubule dynamics by polarized light. Methods in Molecular Medicine . 2007;137:111–123. doi: 10.1007/978-1-59745-442-1_8. PubMed DOI PMC
Oldenbourg R. Polarized light microscopy: principles and practice. Cold Spring Harbor Protocols . 2013;2013(11):pdb.top078600–pdb.top071036. doi: 10.1101/pdb.top078600. PubMed DOI
Shribak M., Oldenbourg R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Applied Optics . 2003;42(16):p. 3009. doi: 10.1364/AO.42.003009. PubMed DOI
Tani T., Koike-Tani M., Tran M. T., Shribak M., Levic S. Postnatal structural development of mammalian basilar membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning. Scientific Reports . 2021;11:1–12. doi: 10.1038/s41598-021-87150-w. PubMed DOI PMC
Axer M., Grässel D., Kleiner M., et al. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Frontiers in Neuroinformatics . 2011;5:1–13. doi: 10.3389/fninf.2011.00034. PubMed DOI PMC
Schmitz D., Lippert T., Amunts K., Axer M. Medical Imaging 2020: Physics of Medical Imaging . International Society for Optics and Photonics; 2020. Quantification of fiber orientation uncertainty in polarized light imaging of the human brain; p. p. 117.
Chenault D. B., Chipman R. A. Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. Applied Optics . 1993;32(19):p. 3513. doi: 10.1364/AO.32.003513. PubMed DOI
Pratt W. K. Digital Image Processing: PIKS Scientific inside . Wiley New York: Wiley-Interscience Publication; 2007.
Junqueira L. C. U., Bignolas G., Brentani R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical Journal . 1979;11(4):447–455. doi: 10.1007/BF01002772. PubMed DOI
Gasser T. C., Ogden R. W., Holzapfel G. A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of The Royal Society Interface . 2006;3(6):15–35. doi: 10.1098/rsif.2005.0073. PubMed DOI PMC
Nagelkerke N. J. D. A note on a general definition of the coefficient of determination. Biometrika . 1991;78(3):691–692. doi: 10.1093/biomet/78.3.691. DOI
Sugita S., Matsumoto T. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media. Biomechanics and Modeling in Mechanobiology . 2017;16(3):763–773. doi: 10.1007/s10237-016-0851-9. PubMed DOI
Oconnell M., Murthy S., Phan S., et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biology . 2008;27(3):171–181. doi: 10.1016/j.matbio.2007.10.008. PubMed DOI PMC
Johnston R. D., Gaul R. T., Lally C. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Acta Biomaterialia . 2021;124:291–300. doi: 10.1016/j.actbio.2021.02.008. PubMed DOI
Krasny W., Morin C., Magoariec H., Avril S. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomaterialia . 2017;57:342–351. doi: 10.1016/j.actbio.2017.04.033. PubMed DOI
Jett S. V., Hudson L. T., Baumwart R., et al. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomaterialia . 2020;102:149–168. doi: 10.1016/j.actbio.2019.11.028. PubMed DOI PMC
Martufi G., Gasser T. C. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. Journal of Biomechanics . 2011;44(14):2544–2550. doi: 10.1016/j.jbiomech.2011.07.015. PubMed DOI
Turčanová M., Hrtoň M., Dvořák P., et al. Full-range optical imaging of planar collagen fiber orientation using polarized light microscopy. https://arxiv.org/abs/2104.14356 . PubMed PMC
Full-Range Optical Imaging of Planar Collagen Fiber Orientation Using Polarized Light Microscopy