Full-Range Optical Imaging of Planar Collagen Fiber Orientation Using Polarized Light Microscopy

. 2021 ; 2021 () : 6879765. [epub] 20211128

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34877357

A novel method for semiautomated assessment of directions of collagen fibers in soft tissues using histological image analysis is presented. It is based on multiple rotated images obtained via polarized light microscopy without any additional components, i.e., with just two polarizers being either perpendicular or nonperpendicular (rotated). This arrangement breaks the limitation of 90° periodicity of polarized light intensity and evaluates the in-plane fiber orientation over the whole 180° range accurately and quickly. After having verified the method, we used histological specimens of porcine Achilles tendon and aorta to validate the proposed algorithm and to lower the number of rotated images needed for evaluation. Our algorithm is capable to analyze 5·105 pixels in one micrograph in a few seconds and is thus a powerful and cheap tool promising a broad application in detection of collagen fiber distribution in soft tissues.

Zobrazit více v PubMed

Fratzl P. Colagen . Springer; 2008. Collagen: Structure and Mechanics, an Introduction; pp. 1–13. DOI

Sassani S. G., Kakisis J., Tsangaris S., Sokolis D. P. Layer-dependent wall properties of abdominal aortic aneurysms: experimental study and material characterization. Journal of the Mechanical Behavior of Biomedical Materials . 2015;49:141–161. doi: 10.1016/j.jmbbm.2015.04.027. PubMed DOI

Vande Geest J. P., Sacks M. S., Vorp D. A. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics . 2006;39(7):1324–1334. doi: 10.1016/j.jbiomech.2005.03.003. PubMed DOI

Gasser T. C., Gallinetti S., Xing X., Forsell C., Swedenborg J., Roy J. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics. Acta Biomaterialia . 2012;8(8):3091–3103. doi: 10.1016/j.actbio.2012.04.044. PubMed DOI

Sokolis D. P., Kefaloyannis E. M., Kouloukoussa M., Marinos E., Boudoulas H., Karayannacos P. E. A structural basis for the aortic stress-strain relation in uniaxial tension. Journal of Biomechanics . 2006;39(9):1651–1662. doi: 10.1016/j.jbiomech.2005.05.003. PubMed DOI

Sassani S. G., Tsangaris S., Sokolis D. P. Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. Journal of Biomechanics . 2015;48(14):3757–3765. doi: 10.1016/j.jbiomech.2015.08.028. PubMed DOI

Holzapfel G. A., Niestrawska J. A., Ogden R. W., Reinisch A. J., Schriefl A. J. Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of The Royal Society Interface . 2015;12(106) doi: 10.1098/rsif.2015.0188. PubMed DOI PMC

Akyildiz A. C., Speelman L., Gijsen F. J. H. Mechanical properties of human atherosclerotic intima tissue. Journal of Biomechanics . 2014;47(4):773–783. doi: 10.1016/j.jbiomech.2014.01.019. PubMed DOI

Hoffman A. H., Teng Z., Zheng J., et al. Stiffness properties of adventitia , media , and full thickness human atherosclerotic carotid arteries in the axial and circumferential directions. Journal of Biomechanical Engineering . 2017;139(12) doi: 10.1115/1.4037794. PubMed DOI PMC

Polzer S., Gasser T. C., Novak K., et al. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomaterialia . 2015;14:133–145. doi: 10.1016/j.actbio.2014.11.043. PubMed DOI

Guinier A., Fournet G., Yudowitch K. L. Small-Angle Scattering of X-Rays . Wiley New York: Wiley; 1955.

Gaul R. T., Nolan D. R., Lally C. Collagen fibre characterisation in arterial tissue under load using SALS. Journal of the Mechanical Behavior of Biomedical Materials . 2017;75:359–368. doi: 10.1016/j.jmbbm.2017.07.036. PubMed DOI

Schrauwen J. T. C., Vilanova A., Rezakhaniha R., Stergiopulos N., van de Vosse F. N., Bovendeerd P. H. M. A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia. Journal of Structural Biology . 2012;180(2):335–342. doi: 10.1016/j.jsb.2012.06.007. PubMed DOI

Rezakhaniha R., Agianniotis A., Schrauwen J. T. C., et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology . 2012;11(3-4):461–473. doi: 10.1007/s10237-011-0325-z. PubMed DOI

Tsamis A., Phillippi J. A., Koch R. G., et al. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. Journal of Biomechanics . 2013;46(16):2787–2794. doi: 10.1016/j.jbiomech.2013.09.003. PubMed DOI PMC

Boerboom R. A., Krahn K. N., Megens R. T. A., van Zandvoort M. A. M. J., Merkx M., Bouten C. V. C. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. Journal of Structural Biology . 2007;159(3):392–399. doi: 10.1016/j.jsb.2007.04.008. PubMed DOI

Georgiou E., Theodossiou T., Hovhannisyan V., Politopoulos K., Rapti G. S., Yova D. Second and third optical harmonic generation in type I collagen, by nanosecond laser irradiation, over a broad spectral region. Optics Communication . 2000;176(1-3):253–260. doi: 10.1016/S0030-4018(00)00504-6. DOI

Tanaka Y., Hase E., Fukushima S., et al. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin. Biomedical Optics Express . 2014;5(4):p. 1099. doi: 10.1364/BOE.5.001099. PubMed DOI PMC

Massoumian F., Juškaitis R., Neil M. A. A., Wilson T. Quantitative polarized light microscopy. Journal of Microscopy . 2003;209(1):13–22. doi: 10.1046/j.1365-2818.2003.01095.x. PubMed DOI

Low J. C. M., Ober T. J., McKinley G. H., Stankovic K. M. Quantitative polarized light microscopy of human cochlear sections. Biomedical Optics Express . 2015;6(2):p. 599. doi: 10.1364/BOE.6.000599. PubMed DOI PMC

Kalwani N. M., Ong C. A., Lysaght A. C., Haward S. J., McKinley G. H., Stankovic K. M. Quantitative polarized light microscopy of unstained mammalian cochlear sections. Journal of Biomedical Optics . 2013;18(2) doi: 10.1117/1.JBO.18.2.026021. PubMed DOI PMC

Ayres C. E., Jha B. S., Meredith H., et al. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. Journal of Biomaterials Science. Polymer Edition . 2008;19(5):603–621. doi: 10.1163/156856208784089643. PubMed DOI

Polzer S., Gasser T. C., Forsell C., et al. Automatic identification and validation of planar collagen organization in the aorta wall with application to abdominal aortic aneurysm. Microscopy and Microanalysis . 2013;19:698–705. doi: 10.1017/S1431927613013251. PubMed DOI

McLean J. P., Gan Y., Lye T. H., Qu D., Lu H. H., Hendon C. P. High-speed collagen fiber modeling and orientation quantification for optical coherence tomography imaging. Optics Express . 2019;27(10) doi: 10.1364/OE.27.014457. PubMed DOI PMC

Finlay H. M., Whittaker P., Canham P. B. Collagen organization in the branching region of human brain arteries. Stroke . 1998;29(8):1595–1601. doi: 10.1161/01.STR.29.8.1595. PubMed DOI

Rowe A. J., Finlay H. M., Canham P. B. Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. Journal of Vascular Research . 2003;40(4):406–415. doi: 10.1159/000072831. PubMed DOI

Sáez P., García A., Peña E., Gasser T. C., Martínez M. A. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery. Acta Biomaterialia . 2016;33:183–193. doi: 10.1016/j.actbio.2016.01.030. PubMed DOI

Novak K., Polzer S., Tichy M., Bursa J. Automatic evaluation of collagen fiber directions from polarized light microscopy images. Microscopy and Microanalysis . 2015;21(4):863–875. doi: 10.1017/S1431927615000586. PubMed DOI

Oldenbourg R., Mei G. New polarized light microscope with precision universal compensator. Journal of Microscopy . 1995;180(2):140–147. doi: 10.1111/j.1365-2818.1995.tb03669.x. PubMed DOI

Oldenbourg R. Analysis of microtubule dynamics by polarized light. Methods in Molecular Medicine . 2007;137:111–123. doi: 10.1007/978-1-59745-442-1_8. PubMed DOI PMC

Oldenbourg R. Polarized light microscopy: principles and practice. Cold Spring Harbor Protocols . 2013;2013(11):pdb.top078600–pdb.top071036. doi: 10.1101/pdb.top078600. PubMed DOI

Shribak M., Oldenbourg R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Applied Optics . 2003;42(16):p. 3009. doi: 10.1364/AO.42.003009. PubMed DOI

Tani T., Koike-Tani M., Tran M. T., Shribak M., Levic S. Postnatal structural development of mammalian basilar membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning. Scientific Reports . 2021;11:1–12. doi: 10.1038/s41598-021-87150-w. PubMed DOI PMC

Axer M., Grässel D., Kleiner M., et al. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Frontiers in Neuroinformatics . 2011;5:1–13. doi: 10.3389/fninf.2011.00034. PubMed DOI PMC

Schmitz D., Lippert T., Amunts K., Axer M. Medical Imaging 2020: Physics of Medical Imaging . International Society for Optics and Photonics; 2020. Quantification of fiber orientation uncertainty in polarized light imaging of the human brain; p. p. 117.

Chenault D. B., Chipman R. A. Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. Applied Optics . 1993;32(19):p. 3513. doi: 10.1364/AO.32.003513. PubMed DOI

Pratt W. K. Digital Image Processing: PIKS Scientific inside . Wiley New York: Wiley-Interscience Publication; 2007.

Junqueira L. C. U., Bignolas G., Brentani R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical Journal . 1979;11(4):447–455. doi: 10.1007/BF01002772. PubMed DOI

Gasser T. C., Ogden R. W., Holzapfel G. A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of The Royal Society Interface . 2006;3(6):15–35. doi: 10.1098/rsif.2005.0073. PubMed DOI PMC

Nagelkerke N. J. D. A note on a general definition of the coefficient of determination. Biometrika . 1991;78(3):691–692. doi: 10.1093/biomet/78.3.691. DOI

Sugita S., Matsumoto T. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media. Biomechanics and Modeling in Mechanobiology . 2017;16(3):763–773. doi: 10.1007/s10237-016-0851-9. PubMed DOI

Oconnell M., Murthy S., Phan S., et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biology . 2008;27(3):171–181. doi: 10.1016/j.matbio.2007.10.008. PubMed DOI PMC

Johnston R. D., Gaul R. T., Lally C. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Acta Biomaterialia . 2021;124:291–300. doi: 10.1016/j.actbio.2021.02.008. PubMed DOI

Krasny W., Morin C., Magoariec H., Avril S. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomaterialia . 2017;57:342–351. doi: 10.1016/j.actbio.2017.04.033. PubMed DOI

Jett S. V., Hudson L. T., Baumwart R., et al. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomaterialia . 2020;102:149–168. doi: 10.1016/j.actbio.2019.11.028. PubMed DOI PMC

Martufi G., Gasser T. C. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. Journal of Biomechanics . 2011;44(14):2544–2550. doi: 10.1016/j.jbiomech.2011.07.015. PubMed DOI

Turčanová M., Hrtoň M., Dvořák P., et al. Full-range optical imaging of planar collagen fiber orientation using polarized light microscopy. https://arxiv.org/abs/2104.14356 . PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Full-Range Optical Imaging of Planar Collagen Fiber Orientation Using Polarized Light Microscopy

. 2021 ; 2021 () : 6879765. [epub] 20211128

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...