Ultrathin Multilayer Textile Structure with Enhanced EMI Shielding and Air-Permeable Properties

. 2021 Nov 29 ; 13 (23) : . [epub] 20211129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34883679

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 Technical University of Liberec

A textile material's electromagnetic interference (EMI) shielding effectiveness mainly depends on the material's electrical conductivity and porosity. Enhancing the conductivity of the material surface can effectively improve the electromagnetic shielding effectiveness. However, the use of highly conductive materials increases production cost, and limits the enhancement of electromagnetic shielding effectiveness. This work aims to improve the EMI shielding effectiveness (EMSE) by using an ultrathin multilayer structure and the air-permeable textile MEFTEX. MEFTEX is a copper-coated non-woven ultrathin fabric. The single-layer MEFTEX SE test results show that the higher its mass per unit area (MEFTEX 30), the better its SE property between 56.14 dB and 62.53 dB in the frequency band 30 MHz-1.5 GHz. Through comparative testing of three groups samples, a higher electromagnetic shielding effect is obtained via multilayer structures due to the increase in thickness and decrease of volume electrical resistivity. Compared to a single layer, the EMI shielding effectiveness of five layers of MEFTEX increases by 44.27-83.8%. Due to its ultrathin and porous structure, and considering the balance from porosity and SE, MEFTEX 10 with three to four layers can still maintain air permeability from 2942 L/m2/s-3658 L/m2/s.

Zobrazit více v PubMed

Garvanova M., Garvanov I., Borissova D. The influence of electromagnetic fields on human brain; Proceedings of the 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA); Bourgas, Bulgaria. 6 June 2020; DOI

Rahimpour S., Kiyani M., Hodges S.E., Turner D.A. Deep brain stimulation and electromagnetic interference. Clin. Neurol. Neurosurg. 2021;203:106577. doi: 10.1016/j.clineuro.2021.106577. PubMed DOI PMC

Chen H.C., Lee K.C., Lin J.H., Koch M. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J. Mater. Process. Technol. 2007;184:124–130. doi: 10.1016/j.jmatprotec.2006.11.030. DOI

Chung D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020;255:123587. doi: 10.1016/j.matchemphys.2020.123587. DOI

Rathebe P., Weyers C., Raphela F. A health and safety model for occupational exposure to radiofrequency fields and static magnetic fields from 1.5 and 3 T MRI scanners. Health Technol. 2019;10:39–50. doi: 10.1007/s12553-019-00379-4. DOI

Cao W., Ma C., Tan S., Ma M., Wan P., Chen F. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro. Lett. 2019;11:1. doi: 10.1007/s40820-019-0304-y. PubMed DOI PMC

Roh J.-S., Chi Y.-S., Kang T.J., Nam S.-W. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Text. Res. J. 2008;78:825–835. doi: 10.1177/0040517507089748. DOI

Geetha S., Satheesh Kumar K.K., Rao C.R.K., Vijayan M., Trivedi D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009;112:2073–2086. doi: 10.1002/app.29812. DOI

Militký J., Šafářová V. Numerical and experimental study of the shielding effectiveness of hybrid fabrics. Vlak. A Text. 2012;19:21–27.

Zeng W., Tao X.M., Chen S., Shang S., Chan H.L.W., Choy S.H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013;6:2631–2638. doi: 10.1039/c3ee41063c. DOI

Moazzenchi B., Montazer M. Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties. Colloids Surfaces A Physicochem. Eng. Asp. 2019;571:110–124. doi: 10.1016/j.colsurfa.2019.03.065. DOI

Rajavel K., Hu Y., Zhu P., Sun R., Wong C. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 2020;399:125791. doi: 10.1016/j.cej.2020.125791. DOI

Mantecca P., Kasemets K., Deokar A., Perelshtein I., Gedanken A., Bahk Y.K., Kianfar B., Wang J. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach. Environ. Sci. Technol. 2017;51:9305–9317. doi: 10.1021/acs.est.7b02390. PubMed DOI

Xiao H., Shi M.W., Wang Q., Liu Q. The electromagnetic shielding and reflective properties of electromagnetic textiles with pores, planar periodic units and space structures. Text. Res. J. 2014;84:1679–1691. doi: 10.1177/0040517514527371. DOI

Palanisamy S., Tunakova V., Hu S., Yang T., Kremenakova D., Venkataraman M., Petru M., Militky J. Electromagnetic Interference Shielding of Metal Coated Ultrathin Nonwoven Fabrics and Their Factorial Design. Polymers. 2021;13:484. doi: 10.3390/polym13040484. PubMed DOI PMC

ASTM International ASTM D 4935 . Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. Volume 10. ASTM International; West Conshohocken, PA, USA: 1999. pp. 1–10. DOI

ASTM D3776/D3776M-20 Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. [(accessed on 11 March 2021)]. Available online: https://www.astm.org/Standards/D3776.htm.

ASTM D5729-97(2004)e1 Standard Test Method for Thickness of Nonwoven Fabrics (Withdrawn 2008) [(accessed on 11 March 2021)]. Available online: https://www.astm.org/Standards/D5729.htm.

Marciniak K., Grabowska K.E., Stempień Z., Stempień S., Luiza I., Bel C.-W. Shielding of electromagnetic radiation by multilayer textile sets. Text. Res. J. 2019;89:948–958. doi: 10.1177/0040517518760749. DOI

ASTM D257-14 Standard Test Methods for DC Resistance or Conductance of Insulating Materials. Standard. 2012;1:1–18. doi: 10.1520/D0257-07. DOI

ISO . ISO 9237: 1995 Textiles—Determination of the Permeability of Fabrics to Air. ISO; Geneva, Switzerland: 1995.

Militký J., Křemenáková D., Venkataraman M., Večerník J. Exceptional Electromagnetic Shielding Properties of Lightweight and Porous Multifunctional Layers. ACS Appl. Electron. Mater. 2020;2:1138–1144. doi: 10.1021/acsaelm.0c00109. DOI

Tezel S., Kavuşturan Y., Vandenbosch G.A., Volski V. Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques. Text. Res. J. 2014;84:461–476. doi: 10.1177/0040517513503728. DOI

Schelkunoff S.A. Transmission theory of plane electromagnetic waves. Proc. Inst. Radio Eng. 1937;25:1457–1492. doi: 10.1109/JRPROC.1937.228764. DOI

Perumalraj R., Dasaradan B.S., Anbarasu R., Arokiaraj P., Harish S.L. Electromagnetic shielding effectiveness of copper core-woven fabrics. J. Text. Inst. 2009;100:512–524. doi: 10.1080/00405000801997587. DOI

Tong X.C. Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press; Boca Raton, FL, USA: 2009. p. 324.

Shinagawa S., Kumagai Y., Urabe K. Conductive papers containing metallized polyester fibers for electromagnetic interference shielding. J. Porous Mater. 1999;6:185–190. doi: 10.1023/A:1009619711017. DOI

White D.R.J. A Handbook Series on Electromagnetic Interference and Compatibility: Electrical Noise and EMI Specifications. Interference Control Technologies, Inc.; Germantown, MD, USA: 1971.

Palanisamy S., Tunakova V., Militky J. Fiber-based structures for electromagnetic shielding—Comparison of different materials and textile structures. Text. Res. J. 2018;88:1992–2012. doi: 10.1177/0040517517715085. DOI

Liu J.L. In: Electromagnetic Wave Shielding and Absorbing Materials. 1st ed. Xing T., editor. Beijing Chemical Industry Press; Beijing, China: 2006.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...