Electromagnetic Interference Shielding of Metal Coated Ultrathin Nonwoven Fabrics and Their Factorial Design
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33546483
PubMed Central
PMC7913670
DOI
10.3390/polym13040484
PII: polym13040484
Knihovny.cz E-zdroje
- Klíčová slova
- copper-nickel coating, design of experiment, electromagnetic shielding, textile material, ultrathin nonwoven,
- Publikační typ
- časopisecké články MeSH
Electromagnetic (EM) radiation is everywhere in this world and galaxy in different forms and levels. In some cases, human beings need to protect themselves from electromagnetic radiations and the same thing is also recommended for electronic devices as well. Lots of studies are there on the shielding of electromagnetic radiation interference using metals, polymers, and minerals. For protecting the human being, textile structures are playing the main role. In the textile material structure itself many types are there; each one is having its unique geometrical shape and design. In this work, the copper/nickel-coated ultrathin nonwoven fabric is prepared like a strip. The 3, 6, and 9 mm thick strips are prepared and laid at different gaps, angles, and layered to study the effect of factors on EM shielding effectiveness as per ASTM D4935-10 standard. The design of experiment has been done to analyze the three factors and three levels of the strip properties having an influence on electromagnetic shielding results. From the findings of the design of experiment (DoE) screening design, the factors are the thickness of the strips, the gap between the strips, and the strips laid angle having a statistically significant effect on electromagnetic shielding effectiveness.
Zobrazit více v PubMed
Barnes F.S., Greenebaum B., editors. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2006.
Martin R., editor. Epidemiology of Electromagnetic Fields. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2008.
Lin J.C., editor. Electromagnetic Fields in Biological Systems. Taylor & Francis Group; Boca Raton, FL, USA: 2012.
Ott H.W. Electromagnetic Compatibility Engineering. John Wiley& Sons, Inc.; Somerset, NJ, USA: 2009.
Geetha S., Kumar K.K.S., Rao C.R.K., Vijayan M., Trivedi D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009;112:2073–2086. doi: 10.1002/app.29812. DOI
Kaynak A., Håkansson E. Characterization of conducting polymer coated fabrics at microwave frequencies. Int. J. Cloth. Sci. Technol. 2009;21:117–126. doi: 10.1108/09556220910933844. DOI
Yanılmaz M., Saraç A.S. A review: Effect of conductive polymers on the conductivities of electrospun mats. Text. Res. J. 2014;84:1325–1342. doi: 10.1177/0040517513495943. DOI
Uzun S., Han M., Strobel C.J., Hantanasirisakul K., Goad A., Dion G., Gogotsi Y. Highly conductive and scalable Ti3C2T -coated fabrics for efficient electromagnetic interference shielding. Carbon. 2021;174:382–389. doi: 10.1016/j.carbon.2020.12.021. DOI
Wu X., Chen Y., Liang K., Yu X., Zhuang Q., Yang Q., Liu S., Liao S., Li N., Zhang H. Fe2O3 Nanowire Arrays on Ni-Coated Yarns as excellent electrodes for High Performance Wearable Yarn-Supercapacitor. J. Alloys Compd. 2020:158156. doi: 10.1016/j.jallcom.2020.158156. DOI
Šafářová V., Militký J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI
Liang R., Cheng W., Xiao H., Shi M., Tang Z., Wang N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2018;88:973–986. doi: 10.1177/0040517517693980. DOI
Ortlek H.G., Saracoglu O.G., Saritas O., Bilgin S. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers Polym. 2012;13:63–67. doi: 10.1007/s12221-012-0063-6. DOI
Perumalraj R., Nalankilli G., Balasaravanan T.R., Roshanraja K., Shyamsundar G., Dasaradan B.S. Electromagnetic shielding tester for conductive textile materials. Indian J. Fibre Text. Res. 2010;35:361–365.
Li T.-T., Wang R., Lou C.-W., Lin M.-C., Lin J.-H. Manufacture and effectiveness evaluations of high-modulus electromagnetic interference shielding/puncture resisting composites. Text. Res. J. 2013;83:1796–1807. doi: 10.1177/0040517513487788. DOI
Lai K., Sun R.-J., Chen M.-Y., Wu H., Zha A.-X. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Text. Res. J. 2007;77:242–246. doi: 10.1177/0040517507074033. DOI
Roh J.-S., Chi Y.-S., Kang T.J., Nam S.-W. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Text. Res. J. 2008;78:825–835. doi: 10.1177/0040517507089748. DOI
Yang K., Periyasamy A.P., Venkataraman M., Militký J., Kremenakova D., Vecernik J., Pulíček R. Resistance against Penetration of Electromagnetic Radiation for Ultra-light Cu/Ni-Coated Polyester Fibrous Materials. Polymers. 2020;12:2029. doi: 10.3390/polym12092029. PubMed DOI PMC
Yu Z.-C., He H., Lu Y., Zhang J.-F., Lou C.-W., Chen A.-P., Lin J.-H. Functional Properties and Electromagnetic Shielding Behaviour of Elastic Warp-knitted Fabrics. Fibres Text. East. Eur. 2015;23:78–83. doi: 10.5604/12303666.1161761. DOI
Tunakova V., Tunak M., Bajzik V., Ocheretna L., Arabuli S., Кизимчук О.П., Vlasenko V. Hybrid knitted fabric for electromagnetic radiation shielding. J. Eng. Fibers Fabr. 2020;15:15. doi: 10.1177/1558925020925397. DOI
D4935-10 ASTM Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International; West Conshohocken, PA, USA: 2010.
Vojtech L., Neruda M. Design of radiofrequency protective clothing containing silver nanoparticles. Fibres Text. East. Eur. 2013;101:141–147.
Palanisamy S., Tunakova V., Militky J. Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures. Text. Res. J. 2017;88:1992–2012. doi: 10.1177/0040517517715085. DOI
Kardarian K., Busani T., Osório I., Domingos H., Igreja R., Franco R., Cortez J. Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding. Mater. Chem. Phys. 2014;147:815–822. doi: 10.1016/j.matchemphys.2014.06.025. DOI
Engin F.Z., Usta I. Electromagnetic shielding effectiveness of polyester fabrics with polyaniline deposition. Text. Res. J. 2013;84:903–912. doi: 10.1177/0040517513515316. DOI
Tian M., Du M., Qu L., Chen S., Zhu S., Han G. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route. RSC Adv. 2017;7:42641–42652. doi: 10.1039/C7RA08224J. DOI
Safarova V., Militký J. Electromagnetic Field Shielding Fabrics with Increased Comfort Properties. Adv. Mater. Res. 2013;677:161–168. doi: 10.4028/www.scientific.net/AMR.677.161. DOI
Šafářová V., Militký J. Multifunctional metal composite textile shields against electromagnetic radiation-effect of various parameters on electromagnetic shielding effectiveness. Polym. Compos. 2015;38:309–323. doi: 10.1002/pc.23588. DOI
Romero S.F., Rodríguez P.L., Bocanegra D.E., Martinez D.P., Cancela M.A. Comparing Open Area Test Site and Resonant Chamber for Unmanned Aerial Vehicle’s High-Intensity Radiated Field Testing. IEEE Trans. Electromagn. Compat. 2018;60:1704–1711. doi: 10.1109/TEMC.2017.2747771. DOI
Valente R.V., De Ruijter C., Vlasveld D., Van Der Zwaag S., Groen W. Setup for EMI Shielding Effectiveness Tests of Electrically Conductive Polymer Composites at Frequencies up to 3.0 GHz. IEEE Access. 2017;5:16665–16675. doi: 10.1109/ACCESS.2017.2741527. DOI
Ozen M.S., Sancak E., Beyit A., Usta I., Akalin M. Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Text. Res. J. 2012;83:849–858. doi: 10.1177/0040517512461683. DOI
Krzysztofik W.J., Borowiec R., Bieda B. Some consideration on shielding effectiveness testing by means of the nested reverberation chambers. Radioengineering. 2011;20:766–774.
Duran D., Kadoğlu H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2014;85:1009–1021. doi: 10.1177/0040517512468811. DOI
MEFTEX 20. [(accessed on 1 October 2020)]; Available online: https://www.meftex.cz/en/meftex-20/p-3/
Kenett R.S., Zacks S., Amberti D. Modern Industrial Statistics. 2nd ed. John Wiley & Sons, Ltd.; Chichester, UK: 2014.
FTTS-FA-003 Specified Requirements of Electromagnetic Shielding Textiles. Volume 2.0. The Committee for Conformity Assessment of Accreditation and Certification on Functional and Technical Textiles; New Taipei City, Taiwan: 2005. [(accessed on 6 October 2020)]. Available online: https://www.ftts.org.tw/estandard.