Electromagnetic Interference Shielding of Metal Coated Ultrathin Nonwoven Fabrics and Their Factorial Design

. 2021 Feb 03 ; 13 (4) : . [epub] 20210203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33546483

Electromagnetic (EM) radiation is everywhere in this world and galaxy in different forms and levels. In some cases, human beings need to protect themselves from electromagnetic radiations and the same thing is also recommended for electronic devices as well. Lots of studies are there on the shielding of electromagnetic radiation interference using metals, polymers, and minerals. For protecting the human being, textile structures are playing the main role. In the textile material structure itself many types are there; each one is having its unique geometrical shape and design. In this work, the copper/nickel-coated ultrathin nonwoven fabric is prepared like a strip. The 3, 6, and 9 mm thick strips are prepared and laid at different gaps, angles, and layered to study the effect of factors on EM shielding effectiveness as per ASTM D4935-10 standard. The design of experiment has been done to analyze the three factors and three levels of the strip properties having an influence on electromagnetic shielding results. From the findings of the design of experiment (DoE) screening design, the factors are the thickness of the strips, the gap between the strips, and the strips laid angle having a statistically significant effect on electromagnetic shielding effectiveness.

Zobrazit více v PubMed

Barnes F.S., Greenebaum B., editors. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2006.

Martin R., editor. Epidemiology of Electromagnetic Fields. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2008.

Lin J.C., editor. Electromagnetic Fields in Biological Systems. Taylor & Francis Group; Boca Raton, FL, USA: 2012.

Ott H.W. Electromagnetic Compatibility Engineering. John Wiley& Sons, Inc.; Somerset, NJ, USA: 2009.

Geetha S., Kumar K.K.S., Rao C.R.K., Vijayan M., Trivedi D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009;112:2073–2086. doi: 10.1002/app.29812. DOI

Kaynak A., Håkansson E. Characterization of conducting polymer coated fabrics at microwave frequencies. Int. J. Cloth. Sci. Technol. 2009;21:117–126. doi: 10.1108/09556220910933844. DOI

Yanılmaz M., Saraç A.S. A review: Effect of conductive polymers on the conductivities of electrospun mats. Text. Res. J. 2014;84:1325–1342. doi: 10.1177/0040517513495943. DOI

Uzun S., Han M., Strobel C.J., Hantanasirisakul K., Goad A., Dion G., Gogotsi Y. Highly conductive and scalable Ti3C2T -coated fabrics for efficient electromagnetic interference shielding. Carbon. 2021;174:382–389. doi: 10.1016/j.carbon.2020.12.021. DOI

Wu X., Chen Y., Liang K., Yu X., Zhuang Q., Yang Q., Liu S., Liao S., Li N., Zhang H. Fe2O3 Nanowire Arrays on Ni-Coated Yarns as excellent electrodes for High Performance Wearable Yarn-Supercapacitor. J. Alloys Compd. 2020:158156. doi: 10.1016/j.jallcom.2020.158156. DOI

Šafářová V., Militký J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI

Liang R., Cheng W., Xiao H., Shi M., Tang Z., Wang N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2018;88:973–986. doi: 10.1177/0040517517693980. DOI

Ortlek H.G., Saracoglu O.G., Saritas O., Bilgin S. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers Polym. 2012;13:63–67. doi: 10.1007/s12221-012-0063-6. DOI

Perumalraj R., Nalankilli G., Balasaravanan T.R., Roshanraja K., Shyamsundar G., Dasaradan B.S. Electromagnetic shielding tester for conductive textile materials. Indian J. Fibre Text. Res. 2010;35:361–365.

Li T.-T., Wang R., Lou C.-W., Lin M.-C., Lin J.-H. Manufacture and effectiveness evaluations of high-modulus electromagnetic interference shielding/puncture resisting composites. Text. Res. J. 2013;83:1796–1807. doi: 10.1177/0040517513487788. DOI

Lai K., Sun R.-J., Chen M.-Y., Wu H., Zha A.-X. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Text. Res. J. 2007;77:242–246. doi: 10.1177/0040517507074033. DOI

Roh J.-S., Chi Y.-S., Kang T.J., Nam S.-W. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Text. Res. J. 2008;78:825–835. doi: 10.1177/0040517507089748. DOI

Yang K., Periyasamy A.P., Venkataraman M., Militký J., Kremenakova D., Vecernik J., Pulíček R. Resistance against Penetration of Electromagnetic Radiation for Ultra-light Cu/Ni-Coated Polyester Fibrous Materials. Polymers. 2020;12:2029. doi: 10.3390/polym12092029. PubMed DOI PMC

Yu Z.-C., He H., Lu Y., Zhang J.-F., Lou C.-W., Chen A.-P., Lin J.-H. Functional Properties and Electromagnetic Shielding Behaviour of Elastic Warp-knitted Fabrics. Fibres Text. East. Eur. 2015;23:78–83. doi: 10.5604/12303666.1161761. DOI

Tunakova V., Tunak M., Bajzik V., Ocheretna L., Arabuli S., Кизимчук О.П., Vlasenko V. Hybrid knitted fabric for electromagnetic radiation shielding. J. Eng. Fibers Fabr. 2020;15:15. doi: 10.1177/1558925020925397. DOI

D4935-10 ASTM Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International; West Conshohocken, PA, USA: 2010.

Vojtech L., Neruda M. Design of radiofrequency protective clothing containing silver nanoparticles. Fibres Text. East. Eur. 2013;101:141–147.

Palanisamy S., Tunakova V., Militky J. Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures. Text. Res. J. 2017;88:1992–2012. doi: 10.1177/0040517517715085. DOI

Kardarian K., Busani T., Osório I., Domingos H., Igreja R., Franco R., Cortez J. Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding. Mater. Chem. Phys. 2014;147:815–822. doi: 10.1016/j.matchemphys.2014.06.025. DOI

Engin F.Z., Usta I. Electromagnetic shielding effectiveness of polyester fabrics with polyaniline deposition. Text. Res. J. 2013;84:903–912. doi: 10.1177/0040517513515316. DOI

Tian M., Du M., Qu L., Chen S., Zhu S., Han G. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route. RSC Adv. 2017;7:42641–42652. doi: 10.1039/C7RA08224J. DOI

Safarova V., Militký J. Electromagnetic Field Shielding Fabrics with Increased Comfort Properties. Adv. Mater. Res. 2013;677:161–168. doi: 10.4028/www.scientific.net/AMR.677.161. DOI

Šafářová V., Militký J. Multifunctional metal composite textile shields against electromagnetic radiation-effect of various parameters on electromagnetic shielding effectiveness. Polym. Compos. 2015;38:309–323. doi: 10.1002/pc.23588. DOI

Romero S.F., Rodríguez P.L., Bocanegra D.E., Martinez D.P., Cancela M.A. Comparing Open Area Test Site and Resonant Chamber for Unmanned Aerial Vehicle’s High-Intensity Radiated Field Testing. IEEE Trans. Electromagn. Compat. 2018;60:1704–1711. doi: 10.1109/TEMC.2017.2747771. DOI

Valente R.V., De Ruijter C., Vlasveld D., Van Der Zwaag S., Groen W. Setup for EMI Shielding Effectiveness Tests of Electrically Conductive Polymer Composites at Frequencies up to 3.0 GHz. IEEE Access. 2017;5:16665–16675. doi: 10.1109/ACCESS.2017.2741527. DOI

Ozen M.S., Sancak E., Beyit A., Usta I., Akalin M. Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Text. Res. J. 2012;83:849–858. doi: 10.1177/0040517512461683. DOI

Krzysztofik W.J., Borowiec R., Bieda B. Some consideration on shielding effectiveness testing by means of the nested reverberation chambers. Radioengineering. 2011;20:766–774.

Duran D., Kadoğlu H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2014;85:1009–1021. doi: 10.1177/0040517512468811. DOI

MEFTEX 20. [(accessed on 1 October 2020)]; Available online: https://www.meftex.cz/en/meftex-20/p-3/

Kenett R.S., Zacks S., Amberti D. Modern Industrial Statistics. 2nd ed. John Wiley & Sons, Ltd.; Chichester, UK: 2014.

FTTS-FA-003 Specified Requirements of Electromagnetic Shielding Textiles. Volume 2.0. The Committee for Conformity Assessment of Accreditation and Certification on Functional and Technical Textiles; New Taipei City, Taiwan: 2005. [(accessed on 6 October 2020)]. Available online: https://www.ftts.org.tw/estandard.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...