Effect of moisture content on the electromagnetic shielding ability of non-conductive textile structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34040087
PubMed Central
PMC8154889
DOI
10.1038/s41598-021-90516-9
PII: 10.1038/s41598-021-90516-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electromagnetically shielding textile materials, especially in professional or ordinary clothing, are used to protect an implanted pacemaker in the body. Alternatively, traditional textiles are known for their non-conductivity and transparency to an electromagnetic field. The main goal of this work was to determine whether the high moisture content (sweat) of the traditional textile structure significantly affects the resulting ability of the material to shield the electromagnetic field. Specifically, whether sufficient wetting of the traditional textile material can increase its electrical conductivity to match the electrically conductive textiles determined for shielding of the electromagnetic field. In this study, cotton and polyester knitted fabric samples were used, and two liquid medias were applied to the samples to simulate human sweating. The experiment was designed to analyse the factors that have a significant effect on the shielding effectiveness that was measured according to ASTM D4935. The following factors have a significant effect on the electromagnetic shielding effectiveness of moisturised fabric: squeezing pressure, drying time and type of liquid media. Additionally, the increase of electromagnetic shielding was up to 1 dB at 1.5 GHz frequency at the highest level of artificial sweat moisturised sample.
Zobrazit více v PubMed
Kodali, W. P. Engineering Electromagnetic Compatibility. (IEEE, 2001). 10.1109/9780470544556
Presman, A. S. Electromagnetic Fields and Life. 19, (Springer US, 1970).
Scaife TM, Heckler AF. Interference between electric and magnetic concepts in introductory physics. Phys. Rev. Spec. Top. Phys. Educ. Res. 2011;7:1–11.
Das A, Kothari VK, Kothari A, Kumar A, Tuli S. Effect of various parameters on electromagnetic shielding effectiveness of textile fabrics. Indian J. Fibre Text. Res. 2009;34:144–148.
Roh J, Chi Y, Kang TJ, Nam S. Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Text. Res. J. 2008;78:825–835. doi: 10.1177/0040517507089748. DOI
Duran D, Kadoğlu H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2015;85:1009–1021. doi: 10.1177/0040517512468811. DOI
Cheng L, et al. Electromagnetic shielding effectiveness and mathematical model of stainless steel composite fabric. J. Text. Inst. 2015;106:577–586. doi: 10.1080/00405000.2014.929275. DOI
Hwang J-H, Kang T-W, Kwon J-H, Park S-O. Effect of electromagnetic interference on human body communication. IEEE Trans. Electromagn. Compat. 2017;59:48–57. doi: 10.1109/TEMC.2016.2598582. DOI
Tezel S, Kavuşturan Y, Vandenbosch GA, Volski V. Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques. Text. Res. J. 2014;84:461–476. doi: 10.1177/0040517513503728. DOI
Su C-I, Chern J-T. Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Text. Res. J. 2004;74:51–54. doi: 10.1177/004051750407400109. DOI
Dhawan SK, Singh N, Rodrigues D. Electromagnetic shielding behaviour of conducting polyaniline composites. Sci. Technol. Adv. Mater. 2003;4:105–113. doi: 10.1016/S1468-6996(02)00053-0. DOI
Tunáková V, Grégr J, Tunák M, Dohnal G. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: optimization of process parameters. J. Ind. Text. 2018;47:686–711. doi: 10.1177/1528083716667262. DOI
Hong Y, et al. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr. Appl. Phys. 2001;1:439–442. doi: 10.1016/S1567-1739(01)00054-2. DOI
Veer J, Kothari VK. Electromagnetic shielding effectiveness of woven fabrics having metal coated zari wrapped yarns. Indian J. Fibre Text. Res. 2017;42:271–277.
Jagatheesan K, Ramasamy A, Das A, Basu A. Fabrics and their composites for electromagnetic shielding applications. Text. Prog. 2015;47:87–161. doi: 10.1080/00405167.2015.1067077. DOI
Ortlek HG, Alpyildiz T, Kilic G. Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Text. Res. J. 2013;83:90–99. doi: 10.1177/0040517512456758. DOI
Sano E, Akiba E. Electromagnetic absorbing materials using nonwoven fabrics coated with multi-walled carbon nanotubes. Carbon N. Y. 2014;78:463–468. doi: 10.1016/j.carbon.2014.07.027. DOI
Mistik, S. İ., Sancak, E., Usta, İ., Koçak, E. D. & Akalin, M. Investigation of Electromagnetic Shielding Properties of Boron and Carbon Fibre Woven Fabrics and Their Polymer Composites. in International Conference: Textiles & Fashion 2012 (2012).
Palanisamy S, Tunakova V, Militky J. Fiber-based structures for electromagnetic shielding—comparison of different materials and textile structures. Text. Res. J. 2018;88:1992–2012. doi: 10.1177/0040517517715085. DOI
Morton WE, Hearle JWS. Physical properties of textile fibers. Woodhead publishing limited; 2008.
Saville BP. Physical testing of textile. Woodhead publishing limited; 1999.
Šafářová V, Militký J. Multifunctional metal composite textile shields against electromagnetic radiation-effect of various parameters on electromagnetic shielding effectiveness. Polym. Compos. 2017;38:309–323. doi: 10.1002/pc.23588. DOI
Phan DT, Jung CW. Multilayered salt water with high optical transparency for EMI shielding applications. Sci. Rep. 2020;10:21549. doi: 10.1038/s41598-020-78717-0. PubMed DOI PMC
Yu Z, Chen Y, He H. Preparation and investigation of moisture transfer and electromagnetic shielding properties of double-layer electromagnetic shielding fabrics. J. Ind. Text. 2020;49:1357–1373. doi: 10.1177/1528083718813528. DOI
Christopoulos, C. Principles and Techniques of Electromagnetic Compatibility. (CRC Press, 2018). 10.1201/9781315221960
Morari C, Balan I, Pintea J, Chitanu E, Iordache I. Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powder. Prog. Electromagn. Res. M. 2011;21:93–104. doi: 10.2528/PIERM11080406. DOI
Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon N. Y. 2009;47:1738–1746. doi: 10.1016/j.carbon.2009.02.030. DOI
Schulz RB, Plantz VC, Brush DR. Shielding theory and practice. IEEE Trans. Electromagn. Compat. 1988;30:187–201. doi: 10.1109/15.3297. DOI
Ott, H. W. Electromagnetic Compatibility Engineering. (Wiley, 2009). 10.1002/9780470508510
Li Z, Jin Z, Shao S, Zhao T, Wang P. Influence of moisture content on electromagnetic response of concrete studied using a homemade apparatus. Sensors. 2019;19:4637. doi: 10.3390/s19214637. PubMed DOI PMC
Palanisamy S, et al. Electromagnetic interference shielding of metal coated ultrathin nonwoven fabrics and their factorial design. Polymers (Basel). 2021;13:484. doi: 10.3390/polym13040484. PubMed DOI PMC
A Silver Yarn-Incorporated Song Brocade Fabric with Enhanced Electromagnetic Shielding