A Silver Yarn-Incorporated Song Brocade Fabric with Enhanced Electromagnetic Shielding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34300698
PubMed Central
PMC8307523
DOI
10.3390/ma14143779
PII: ma14143779
Knihovny.cz E-zdroje
- Klíčová slova
- Song Brocade fabric, UV protection, air permeability, electromagnetic shielding, surficial pattern,
- Publikační typ
- časopisecké články MeSH
The fabrics with electromagnetic interference (EMI) have been used in various fields. However, most studies related to the EMI fabrics focused on the improvement of the final electromagnetic shielding effectiveness (EM SE) by adjusting the preparation parameters while the breathability of the EMI fabrics was affected and the visible surficial patterns on the EMI fabric was limited. In this work, the two samples based on the Song Brocade structure were fabricated with surficial visible pattern ''. One was fabricated with silver-plated polyamide (Ag-PA) yarns and the silk yarns, the another with polyester (PET) yarns and the silk yarns. The weaving structure of the two samples were investigated by scanning electronic microscopy (SEM) and laser optical microscopy (LOM). The resistance against the EM radiation near field communication (NFC) and the ultraviolet (UV) light was also evaluated. Besides, the surface resistance, the air permeability and the water evaporation rate were investigated. The results revealed that the '' appeared successfully on the surface of the two samples with stable weaving structure. The Ag-PA yarn-incorporated Song Brocade fabric had the EMI shielding effectiveness value around 50 dB, which was supported by the low surface resistance less than 40 Ω. The excellent NFC shielding of the Ag-PA yarn-incorporated Song Brocade was also found. The ultraviolet protection factor (UPF) value of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 190. The air permeability and the evaporation rate of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 99 mm/s, and 1.4 g/h, respectively. As a result, the Ag-PA yarn-incorporated Song Brocade fabrics were proposed for both the personal and the industrial scale utilization.
Zobrazit více v PubMed
Kramarenko A.V., Tan U. Effects of high-frequency electromagnetic fields on human EEG: A brain mapping study. Int. J. Neurosci. 2009;113:1007–1019. doi: 10.1080/00207450390220330. PubMed DOI
Sırav B., Seyhan N. Effects of GSM Modulated Radio-Frequency Electromagnetic Radiation on Permeability of Blood–Brain Barrier in Male & Female Rats. J. Chem. Neuroanat. 2016;75:123–127. doi: 10.1016/j.jchemneu.2015.12.010. PubMed DOI
Cvetković M., Poljak D., Hirata A. The Electromagnetic-Thermal Dosimetry for the Homogeneous Human Brain Model. Eng. Anal. Bound. Elem. 2016;63:61–73. doi: 10.1016/j.enganabound.2015.11.002. DOI
Zhang X., Jin Z. A Kind of Song Brocade Fabric with NFC Data Masking Function Used for Making Purse. IOP Conf. Ser. Mater. Sci. Eng. 2018;389:012037. doi: 10.1088/1757-899X/389/1/012037. DOI
Coskun V., Ozdenizci B., Ok K. A Survey on Near Field Communication (NFC) Technology. Wirel. Pers. Commun. 2013;71:2259–2294. doi: 10.1007/s11277-012-0935-5. DOI
Reveilhac M., Pasquet M. Promising Secure Element Alternatives for NFC Technology; Proceedings of the 2009 First International Workshop on Near Field Communication; Hagenberg, Austria. 24–24 February 2009; pp. 75–80. DOI
Vagdevi P., Nagaraj D., Prasad G.V. Home: IOT Based Home Automation Using NFC; Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC); Palladam, India. 10–11 February 2017; pp. 861–865. DOI
Palanisamy S., Tunakova V., Hu S., Yang T., Kremenakova D., Venkataraman M., Petru M., Militky J. Electromagnetic Interference Shielding of Metal Coated Ultrathin Nonwoven Fabrics and Their Factorial Design. Polymers. 2021;13:484. doi: 10.3390/polym13040484. PubMed DOI PMC
Palanisamy S., Tunakova V., Militky J. Fiber-Based Structures for Electromagnetic Shielding—Comparison of Different Materials and Textile Structures. Text. Res. J. 2018;88:1992–2012. doi: 10.1177/0040517517715085. DOI
Jagatheesan K., Ramasamy A., Das A., Basu A. Fabrics and Their Composites for Electromagnetic Shielding Applications. Text. Prog. 2015;47:87–161. doi: 10.1080/00405167.2015.1067077. DOI
Hong J., Xu P., Xia H., Xu Z., Ni Q.-Q. Electromagnetic Interference Shielding Anisotropy Enhanced by CFRP Laminated Structures. Compos. Sci. Technol. 2021;203:108616. doi: 10.1016/j.compscitech.2020.108616. DOI
Periyasamy A.P., Yang K., Xiong X., Venkataraman M., Militky J., Mishra R., Kremenakova D. Effect of Silanization on Copper Coated Milife Fabric with Improved EMI Shielding Effectiveness. Mater. Chem. Phys. 2020;239:122008. doi: 10.1016/j.matchemphys.2019.122008. DOI
Azim S.S., Satheesh A., Ramu K.K., Ramu S., Venkatachari G. Studies on Graphite Based Conductive Paint Coatings. Prog. Org. Coat. 2006;55:1–4. doi: 10.1016/j.porgcoat.2005.09.001. DOI
Yip J., Jiang S., Wong C. Characterization of Metallic Textiles Deposited by Magnetron Sputtering and Traditional Metallic Treatments. Surf. Coat. Technol. 2009;204:380–385. doi: 10.1016/j.surfcoat.2009.07.040. DOI
Erdumlu N., Saricam C. Electromagnetic Shielding Effectiveness of Woven Fabrics Containing Cotton/Metal-Wrapped Hybrid Yarns. J. Ind. Text. 2016;46:1084–1103. doi: 10.1177/1528083715613628. DOI
Uzun S., Han M., Strobel C.J., Hantanasirisakul K., Goad A., Dion G., Gogotsi Y. Highly Conductive and Scalable Ti3C2T x -Coated Fabrics for Efficient Electromagnetic Interference Shielding. Carbon. 2021;174:382–389. doi: 10.1016/j.carbon.2020.12.021. DOI
Yang K., Periyasamy A.P., Venkataraman M., Militky J., Kremenakova D., Vecernik J., Pulíček R. Resistance against Penetration of Electromagnetic Radiation for Ultra-Light Cu/Ni-Coated Polyester Fibrous Materials. Polymers. 2020;12:2029. doi: 10.3390/polym12092029. PubMed DOI PMC
Khalili A., Mottaghitalab A., Hasanzadeh M., Mottaghitalab V. Rejection of Far Infrared Radiation from the Human Body Using Cu–Ni–P–Ni Nanocomposite Electroless Plated PET Fabric. Int. J. Ind. Chem. 2017;8:109–120. doi: 10.1007/s40090-017-0114-3. DOI
Zhou Y., Li W., Li L., Sun Z., Jiang L., Ma J., Chen S., Ning X., Zhou F.-L. Lightweight and Highly Conductive Silver Nanoparticles Functionalized Meta-Aramid Nonwoven Fabric for Enhanced Electromagnetic Interference Shielding. J. Mater. Sci. 2021;56:6499–6513. doi: 10.1007/s10853-020-05600-8. DOI
Gao Y.-N., Wang Y., Yue T.-N., Weng Y.-X., Wang M. Multifunctional Cotton Non-Woven Fabrics Coated with Silver Nanoparticles and Polymers for Antibacterial, Superhydrophobic and High Performance Microwave Shielding. J. Colloid Interface Sci. 2021;582:112–123. doi: 10.1016/j.jcis.2020.08.037. PubMed DOI
Palanisamy S., Tunakova V., Militky J., Wiener J. Effect of Moisture Content on the Electromagnetic Shielding Ability of Non-Conductive Textile Structures. Sci. Rep. 2021;11:11032. doi: 10.1038/s41598-021-90516-9. PubMed DOI PMC
Lou C.-W., Liu Y.-L., Shiu B.-C., Peng H.-K., Lin J.-H. Preparation and Evaluation of Polyester-Cotton/Wire Blended Conductive Woven Fabrics for Electromagnetic Shielding. J. Ind. Text. 2021:152808372199718. doi: 10.1177/1528083721997184. DOI
Lou C.-W., Lin T.A., Chen A.-P., Lin J.-H. Stainless Steel/Polyester Woven Fabrics and Copper/Polyester Woven Fabrics: Manufacturing Techniques and Electromagnetic Shielding Effectiveness. J. Ind. Text. 2016;46:214–236. doi: 10.1177/1528083715580518. DOI
Lin T.A., Lin M.-C., Lin T.R., Sim K.S., Lin J.-H., Lou C.-W. High-Strength Protective Polyester Textiles Incorporated with Metallic Materials: Characterizations and Radiation-Shielding Effectiveness. J. Ind. Text. 2020:152808372090467. doi: 10.1177/1528083720904678. DOI
Lou C.W., Lin C.-M., Hsing W.-H., Chen A.-P., Lin J.-H. Manufacturing Techniques and Electrical Properties of Conductive Fabrics with Recycled Polypropylene Nonwoven Selvage. Text. Res. J. 2011;81:1331–1343. doi: 10.1177/0040517511399962. DOI
Peng H.-K., Wang Y., Li T.-T., Lou C.-W., Wang X., Lin J.-H. Polysufonamide/Stainless Steel Woven Fabrics: Manufacturing Techniques, Flame Retardance and Electromagnetic Shielding Effectiveness. Fibers Polym. 2020;21:775–784. doi: 10.1007/s12221-020-8814-2. DOI
Veer J., Kothari V.K. Electromagnetic Shielding Effectiveness of Woven Fabrics Having Metal Coated Zari Wrapped Yarns. Indian J. Fibre Text. Res. 2017;42:271–277.
Chen K., Lu D., Jin Z., Su M., Jin J. Song Brocade in the Ming and Qing Dynasties. Cloth. Text. Res. J. 2020;38:285–297. doi: 10.1177/0887302X20932657. DOI
Glo J., Shen H., Nie K. Inheritance of Song Brocade Weaving Technology Based on 3D Technology. J. Silk. 2020;57:78–83. doi: 10.3969/j.issn.1001-7003.2020.09.014. DOI
Li C., Wang Y., Qu H. Study on the Influence of Song Brocade’s Cultural Identity on Consumers’ Purchase Intention the Mediating Function of Brand Recognition. J. Silk. 2020;57:11–17. doi: 10.3969/j.issn.1001-7003.2020.06.003. DOI
Yang P., Jin Z., Wu J. The Research on Jacquard Weaving Technology of Self, Adhesive Song Brocade Bag Fabric. J. Silk. 2018;55:81–85. doi: 10.3969/j.issn.1001-7003.2018.09.013. DOI
Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004;13:600–612. doi: 10.1109/TIP.2003.819861. PubMed DOI
Wang L., Li J., Liu H. A Simple Process for Electroless Plating Nickel–Phosphorus Film on Wood Veneer. Wood Sci. Technol. 2011;45:161–167. doi: 10.1007/s00226-010-0303-0. DOI
Singh Y. Electrical resistivity measurements: A review. Int. J. Mod. Phys. Conf. Ser. 2013;22:745–756. doi: 10.1142/S2010194513010970. DOI
Xu C., Hu J., Chen Y., Yang Q., Zhang Y., Wang C., Chen K. Rapid Synthesis of Strawberry Microcapsules via Pickering Emulsion Photopolymerization for Use in Multifunctional Fabric Coatings. Prog. Org. Coat. 2021;152:106110. doi: 10.1016/j.porgcoat.2020.106110. DOI
Liu H., Xu Y. Influence of Nano-ZnO to Finishing on Anti-UV Properties of Silk Fabrics. J. Text. Res. 2016;37:104.
Yang T., Zhou W., Ma P. Manufacture and Property of Warp-Knitted Fabrics with Polylactic Acid Multifilament. Polymers. 2019;11:65. doi: 10.3390/polym11010065. PubMed DOI PMC
Chen D., Tan L., Liu H., Tang F., Hu J., Li Y. Fabrication of Fast-Absorbing and Quick-Drying Wool Fabrics with Good Washing Durability. Chemsuschem. 2010;3:1031–1035. doi: 10.1002/cssc.201000176. PubMed DOI
Peng H.-K., Wang Y., Li T.-T., Lou C.-W., He Q., Lin J.-H. Superhydrophobic/Flame Retardant/EMI Shielding Fabrics: Manufacturing Techniques and Property Evaluations. Appl. Sci. 2019;9:1914. doi: 10.3390/app9091914. DOI
Ramírez-Herrera C.A., Gonzalez H., de la Torre F., Benitez L., Cabañas-Moreno J.G., Lozano K. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Interlayered Systems Composed by Carbon Nanotube Filled Carbon Nanofiber Mats and Polymer Composites. Nanomaterials. 2019;9:238. doi: 10.3390/nano9020238. PubMed DOI PMC