Resistance against Penetration of Electromagnetic Radiation for Ultra-light Cu/Ni-Coated Polyester Fibrous Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.01.1.02/0.0/0.0/15_019/0004465
the Ministry of Industry and Trade of the Czech Republic under the research project entitled Extreme shielding textile materials for special applications
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education under project Hybrid Materials for Hierarchical
PubMed
32899520
PubMed Central
PMC7564423
DOI
10.3390/polym12092029
PII: polym12092029
Knihovny.cz E-zdroje
- Klíčová slova
- Cu/Ni deposition, UV protection, electrical resistance, electroless plating, electromagnetic shielding effectiveness, thermal radiation resistance, water contact angle,
- Publikační typ
- časopisecké články MeSH
Resistance against penetration of various rays including electromagnetic waves (EM), infrared rays (IR), and ultraviolet rays (UV) has been realized by using copper (Cu)-coated fabrics. However, the corrosion of the Cu on coated fabrics influenced the shielding effectiveness of the various rays. Besides, the metal-coated fabrics have high density and are unbreathable. This work aims to solve the problem by incorporating nickel (Ni) into the Cu coating on the ultra-light polyester fibrous materials (Milife® composite nonwoven fabric-10 g/m2, abbreviation Milife) via electroless plating. The electromagnetic interference (EMI), IR test, ultraviolet protection factor (UPF), water contact angle, and air permeability of the Cu/Ni-coated Milife fabric were measured. All the samples were assumed as ultra-light and breathable by obtaining the similar fabric density (~10.57 g/m2) and large air permeability (600-1050 mm/s). The Cu/Ni deposition on the Milife fabrics only covered the fibers. The EM shielding effectiveness (SE) decreased from 26 to 20 dB, the IR reflectance (Rinfrared) decreased from 0.570 to 0.473 with increasing wNi from 0 to 19.5 wt %, while the wNi improved the UPF from 9 to 48. Besides, addition of Ni changed the Cu/Ni-coated Milife fabric from hydrophilicity to the hydrophobicity by observing WCA from 77.7° to 114°.
Zobrazit více v PubMed
Shyr T.-W., Shie J.-W. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles. J. Magn. Magn. Mater. 2012;324:4127–4132. doi: 10.1016/j.jmmm.2012.07.037. DOI
Ohlan R. Effect of Electromagnetic Radiations On Human Body. Int. J. Comput. Sci. Eng. 2018;6:285–288. doi: 10.26438/ijcse/v6i9.285288. DOI
Singh K., Nagaraj A., Yousuf A., Ganta S., Pareek S., Vishnani P. Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function. J. Int. Soc. Prev. Community Dent. 2016;6:54. doi: 10.4103/2231-0762.175413. PubMed DOI PMC
Zhang X., Jin Z. A Kind of Song Brocade Fabric with NFC Data Masking Function Used for Making Purse. IOP Conf. Ser. Mater. Sci. Eng. 2018;389 doi: 10.1088/1757-899X/389/1/012037. DOI
Albertson IV R.T., Arthur J., Rashid M.H. Overview of electromagnetic interference; Proceedings of the 2006 38th Annual North American Power Symposium (NAPS-2006); Carbondale, IL, USA. 17–19 September 2006; 2006. pp. 263–266.
Azim S.S., Satheesh A., Ramu K.K., Ramu S., Venkatachari G. Studies on graphite based conductive paint coatings. Prog. Org. Coat. 2006;55:1–4. doi: 10.1016/j.porgcoat.2005.09.001. DOI
Yip J., Jiang S., Wong C. Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments. Surf. Coat. Technol. 2009;204:380–385. doi: 10.1016/j.surfcoat.2009.07.040. DOI
Khalili A., Mottaghitalab A., Hasanzadeh M., Mottaghitalab V. Rejection of far infrared radiation from the human body using Cu–Ni–P–Ni nanocomposite electroless plated PET fabric. Int. J. Ind. Chem. 2017;8:109–120. doi: 10.1007/s40090-017-0114-3. DOI
Pang J., Li Q., Wang W., Xu X., Zhai J. Preparation and characterization of electroless Ni-Co-P ternary alloy on fly ash cenospheres. Surf. Coat. Technol. 2011;205:4237–4242. doi: 10.1016/j.surfcoat.2011.03.020. DOI
Sabeen A.H., Kamaruddin S.N.B., Noor Z.Z. Environmental impacts assessment of industrial wastewater treatment system using electroless nickel plating and life cycle assessment approaches. Int. J. Environ. Sci. Technol. 2019;16:3171–3182. doi: 10.1007/s13762-018-1974-6. DOI
Han Y. Advances in Energy and Environmental Materials; Proceedings of the Chinese Material Conference (CMC; Yinchuan, China. 6–12 July 2017.
Han E.G., Kim E.A., Oh K.W. Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics. Synth. Met. 2001;123:469–476. doi: 10.1016/S0379-6779(01)00332-0. DOI
Chen H., Tai Y., Xu C. Fabrication of copper-coated glass fabric composites through electroless plating process. J. Mater. Sci. Mater. Electron. 2017;28:798–802. doi: 10.1007/s10854-016-5592-0. DOI
Tai Y., Xu C., Chen H. Silver-coated glass fabric composites prepared by electroless plating. Mater. Lett. 2016;180:144–147. doi: 10.1016/j.matlet.2016.05.118. DOI
Moazzenchi B., Montazer M. Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties. Colloids Surf. A Physicochem. Eng. Asp. 2019;571:110–124. doi: 10.1016/j.colsurfa.2019.03.065. DOI
Šafářová V., Tunák M., Militký J. Prediction of hybrid woven fabric electromagnetic shielding effectiveness. Text. Res. J. 2015;85:673–686. doi: 10.1177/0040517514555802. DOI
Song J., Wang L., Zibart A., Koch C. Corrosion protection of electrically conductive surfaces. Metals. 2012;2:450–477. doi: 10.3390/met2040450. DOI
Jiang S.X., Guo R.H. Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric. Surf. Coat. Technol. 2011;205:4274–4279. doi: 10.1016/j.surfcoat.2011.03.033. DOI
Venkataraman M., Mishra R., Militky J., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI
Prince P.A., Yang K., Xiong X., Venkataraman M., Militky J., Mishra R., Kremenakova D. Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater. Chem. Phys. 2020;239:122008. doi: 10.1016/j.matchemphys.2019.122008. DOI
Šafářová V., Tunák M., Truhlář M., Militký J. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J. 2016;86:44–56. doi: 10.1177/0040517515581587. DOI
Tunáková V., Techniková L., Militký J. Influence of washing/drying cycles on fundamental properties of metal fiber-containing fabrics designed for electromagnetic shielding purposes. Text. Res. J. 2016;87:175–192. doi: 10.1177/0040517515627168. DOI
Šafářová V., Militký J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI
Zhang Y., Li T.T., Ren H.T., Sun F., Lin Q., Lin J.H., Lou C.W. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning. RSC Adv. 2020;10:3529–3538. doi: 10.1039/C9RA06022G. PubMed DOI PMC
Sheng J., Zhang M., Xu Y., Yu J., Ding B. Tailoring Water-Resistant and Breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane. ACS Appl. Mater. Interfaces. 2016;8:27218–27226. doi: 10.1021/acsami.6b09392. PubMed DOI
Committee for Conformity Assessment of Accreditation and Certification on Functional and Technical Textiles Specified Requirements of Electromagnetic Shielding Textiles Version. [(accessed on 5 September 2020)];2015 Available online: https://www.ftts.org.tw/images/019e.pdf.
Osterwalder U., Herzog B. Sun protection factors: World wide confusion. Br. J. Dermatol. 2009;161:13–24. doi: 10.1111/j.1365-2133.2009.09506.x. PubMed DOI
Periyasamy A.P., Yang K., Xiong X., Venkatraman M., Militky J., Mishra R., Kremenakova D. Influence of EMI Shielding on Silane-coated Conductive Fabric; Proceedings of the Textile Bioengineering and Informatics Symposium Proceedings 2019—12th Textile Bioengineering and Informatics Symposium, TBIS 2019; Suzhou, China. 8–11 September 2019; pp. 67–71.
VSalehikahrizsangi P., Raeissi K., Karimzadeh F., Calabrese L., Patane S., Proverbio E. Erosion-corrosion behavior of highly hydrophobic hierarchical nickel coatings. Colloids Surf. A Physicochem. Eng. Asp. 2018;558:446–454. doi: 10.1016/j.colsurfa.2018.09.003. DOI
Xiang T., Ding S., Li C., Zheng S., Hu W., Wang J., Liu P. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel. Mater. Des. 2017;114:65–72. doi: 10.1016/j.matdes.2016.10.047. DOI
A Silver Yarn-Incorporated Song Brocade Fabric with Enhanced Electromagnetic Shielding