Neural network model applied to electromagnetic shielding effectiveness of ultra-light Ni/Cu coated polyester fibrous materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35597857
PubMed Central
PMC9124190
DOI
10.1038/s41598-022-12593-8
PII: 10.1038/s41598-022-12593-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The purpose of effective electromagnetic interference (EMI) shielding is to prevent EMI from smartphone, wireless, and utilization of other electronic devices. The electrical conductivity of materials strongly influences on the EMI shielding properties. In this work, mainly focus to predict the EMI shielding effectiveness on the ultralight weight fibrous materials by artificial neural network (ANN). Prior to the ANN modelling, the ultra-lightweight fibrous materials were electroplated with different concentration of Ni/Cu and then coated with different silanes. This work utilizes the algorithm to provide accurate quantitative values of EMI shielding effectiveness (EM SE). To compare its performance, the experimental and the predicted EM SE values were validated by root-mean-square error (RMSE), mean absolute percentage error (MAPE) values and correlation coefficient 'r'. The proposed ANN results accurately predict the experimental data with correlation coefficients of 0.991 and 0.997. Further due to its simplicity, reliability as well as its efficient computational capability the proposed ANN model permits relatively fast, cost effective and objective estimates to be made of serving in this industry.
Zobrazit více v PubMed
Gao H, Wang C, Yang Z, Zhang Y. 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Compos. Sci. Technol. 2021;213:108896. doi: 10.1016/j.compscitech.2021.108896. DOI
Yang K, et al. Resistance against penetration of electromagnetic radiation for ultra-light Cu/Ni-coated polyester fibrous materials. Polymers. 2020;12:2029. doi: 10.3390/polym12092029. PubMed DOI PMC
Wang Y, Wang W, Ding X, Yu D. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chem. Eng. J. 2020;380:122553. doi: 10.1016/j.cej.2019.122553. DOI
Zhang Y, Qiu M, Yu Y, Wen B, Cheng L. A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces. 2017;9:809–818. doi: 10.1021/acsami.6b11989. PubMed DOI
Joo J, Lee CY. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl. Phys. 2000;88:1–10. doi: 10.1063/1.373688. DOI
Hu, S., Kremenakova, D., Militký, J. & Periyasamy, A. P. Copper-coated textiles for viruses dodging. in Textiles and Their Use in Microbial Protection 235–250 (CRC Press, 2021). 10.1201/9781003140436-14.
Hu, S. et al. Copper coated textiles for inhibition of virus spread. in 13th Textile Bioengineering and Informatics Symposium, TBIS 2020 (2020).
Kechiche MB, Bauer F, Harzallah O, Drean JY. Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sens. Actuators A. 2013;204:122–130. doi: 10.1016/j.sna.2013.10.007. DOI
Fu K, Padbury R, Toprakci O, Dirican M, Zhang X. Conductive textiles. In: Miao M, Xin JH, editors. Engineering of High-Performance Textiles. Woodhead Publishing; 2018. pp. 305–334.
Chen H, Tai Y, Xu C. Fabrication of copper-coated glass fabric composites through electroless plating process. J. Mater. Sci. Mater. Electron. 2017;28:798–802. doi: 10.1007/s10854-016-5592-0. DOI
Wang, Y.-F. et al. Disinfection mechanisms of UV light and ozonization. in 13th Textile Bioengineering and Informatics Symposium, TBIS 2020 (2020).
Amani, M. & Maleki, M. Artificial neural network prosperities in textile applications. in Artificial Neural Networks Industrial and Control Engineering Applications (InTech, 2011). 10.5772/16095.
Sharma B, Kumar S, Tiwari P, Yadav P, Nezhurina MI. ANN based short-term traffic flow forecasting in undivided two lane highway. J. Big Data. 2018;5:48. doi: 10.1186/s40537-018-0157-0. DOI
Awad, M., AlHamaydeh, M. & Mohamed, A. F. Structural damage fault detection using Artificial Neural network profile monitoring. in 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) 1–6 (IEEE, 2017). 10.1109/ICMSAO.2017.7934864.
Torre A, Garcia F, Moromi I, Espinoza P, Acuña L. Prediction of compression strength of high performance concrete using artificial neural networks. J. Phys. Conf. Ser. 2015;582:012010. doi: 10.1088/1742-6596/582/1/012010. DOI
Cheng L, Adams DL. Yarn strength prediction using neural networks. Text. Res. J. 1995;65:495–500. doi: 10.1177/004051759506500901. DOI
Zaman, R. & Wunsch, D. C. Prediction of yarn strength from fiber properties using fuzzy ARTMAP. in Proceedings of the International Conference on Vision, Recognition, Action: Neural Models of Mind and Machine 1–8 (Boston University, 1997).
Muthusamy LP, Periyasamy AP, Govindan N. Prediction of pilling grade of alkali-treated regenerated cellulosic fabric using fuzzy inference system. J. Text. Inst. 2021;1:1–11. doi: 10.1080/00405000.2021.2012909. DOI
Hossain I, et al. Predicting the mechanical properties of viscose/lycra knitted fabrics using fuzzy technique. Adv. Fuzzy Syst. 2016;2016:1–9. doi: 10.1155/2016/3632895. DOI
Nasiri, M., Taheri, M. S. & Tarkesh, H. Applying genetic-fuzzy approach to model polyester dyeing. in Advances in Soft Computing (eds. Melin, P., Castillo, O., Ramírez, E. G., Kacprzyk, J. & Pedrycz, W.) vol. 41, 608–617 (Springer, 2007).
Hussain T, Malik ZA, Arshad Z, Nazir A. Comparison of artificial neural network and adaptive neuro-fuzzy inference system for predicting the wrinkle recovery of woven fabrics. J. Text. Inst. 2015;106:934–938. doi: 10.1080/00405000.2014.953790. DOI
Muthusamy LP, Periyasamy AP, Militký J, Palani R. Adaptive neuro-fuzzy inference system to predict the release of microplastic fibers during domestic washing. J. Test. Eval. 2021 doi: 10.1520/JTE20210175. DOI
Zhang Y, Pan T, Yang Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 2020;389:124433. doi: 10.1016/j.cej.2020.124433. DOI
Zhang Y, et al. Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. A Appl. Sci. Manuf. 2020;137:105994. doi: 10.1016/j.compositesa.2020.105994. DOI
Committee for Conformity Assessment on Accreditation and Certification of Functional and Technical Textiles. Specified Requirements of Electromagnetic Shielding Textiles. www.ftts.org.tw/images/fa003E.pdf (2010).
Deji S, Nishizawa K. Abnormal responses of electronic pocket dosimeters caused by high frequency electromagnetic fields emitted from digital cellular telephones. Health Phys. 2005;89:224–232. doi: 10.1097/01.HP.0000164652.70851.4f. PubMed DOI
Committee for Conformity Assessment on Accreditation and Certification of Functional and Technical Textiles. Specified Requirements of Electromagnetic Shielding Textiles. (2010).
Periyasamy AP, et al. Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater. Chem. Phys. 2020;239:122008. doi: 10.1016/j.matchemphys.2019.122008. DOI
Periyasamy AP, Vikova M, Vik M. Spectral and physical properties organo-silica coated photochromic poly-ethylene terephthalate (PET) fabrics. J. Text. Inst. 2020;111:808–820. doi: 10.1080/00405000.2019.1663633. DOI
Periyasamy AP, Venkataraman M, Kremenakova D, Militky J, Zhou Y. Progress in sol-gel technology for the coatings of fabrics. Materials. 2020;13:1838. doi: 10.3390/ma13081838. PubMed DOI PMC
Šafářová V, Tunák M, Truhlář M, Militký J. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J. 2016;86:44–56. doi: 10.1177/0040517515581587. DOI
ASTM D 4935–10:2010: Standard Test Method for Measuring the Electromagnetic Effectiveness of Planar Materials. (2010).
Šafářová V, Militký J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI
Šafářová V, Tunák M, Militký J. Prediction of hybrid woven fabric electromagnetic shielding effectiveness. Text. Res. J. 2015;85:673–686. doi: 10.1177/0040517514555802. DOI
Tunáková V, Techniková L, Militký J. Influence of washing/drying cycles on fundamental properties of metal fiber-containing fabrics designed for electromagnetic shielding purposes. Text. Res. J. 2016;87:175–192. doi: 10.1177/0040517515627168. DOI