Electromagnetic shielding effectiveness of three-dimensional multilayered interlaced woven fabrics using stainless steel fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39866400
PubMed Central
PMC11759627
DOI
10.1016/j.heliyon.2025.e41669
PII: S2405-8440(25)00049-0
Knihovny.cz E-zdroje
- Klíčová slova
- Electromagnetic shielding, Interlacing, Three-dimensional, Weave, Woven fabric,
- Publikační typ
- časopisecké články MeSH
This study explores and discusses the design, the manufacturing and the morphology of three-dimensional (3D) multilayered weft interlaced woven fabrics using stainless steel fibers on the electromagnetic shielding efficiency (SE). Design solutions of 3D multilayered interlaced fabrics in relation to electromagnetic shielding efficiency are still not sufficiently investigated. Moreover, this study aims to analyze the differences in the internal geometry of 3D multilayered weft interlaced fabrics with different number of layers and frequency of connecting points in multilayered woven fabrics on electromagnetic SE. For this study, the input staple yarn 2 × 20 tex (mixed 80 % polyester/20 % stainless steel fibers) is used for production of approximately 28 types of different 3D multilayer weft interlaced woven fabrics (two and three-layer), with connecting points ranging from 0.5 cm × 0.5 cm-5 cm × 5 cm. The comparison of internal fabric microstructures indicates statistically significant differences in relation to SE, and this contribution extends the theoretical guidance of woven fabric construction with the design and production of special 3D multilayered interlaced fabrics with controlled SE.
Department of Material Engineering Technical University of Liberec Czech Republic
Department of Technologies and Structures Technical University of Liberec Czech Republic
Department of Textile Evaluation Technical University of Liberec Czech Republic
Zobrazit více v PubMed
Blachowicz T., Wójcik D., Surma M., Magnuski M., Ehrmann G., Ehrmann A. Textile fabrics as electromagnetic shielding materials—a review of preparation and performance. Fibers. 2023;11:29. doi: 10.3390/fib11030029. DOI
Kolčavová Sirková B., Mertová I. Technical University; Liberec, Liberec: 2018. Modeling of Construction of Woven Fabric.
Tunakova V., Tunak M. Carbon-fiber reinforcements for epoxy composites with electromagnetic radiation protection-prediction of electromagnetic shielding ability. Compos. Sci. Technol. 2021;215 doi: 10.1016/j.compscitech.2021.109029. DOI
Palanisamy S., Tunakova V., Militky J. Fiber-based structures for electromagnetic shielding - comparison of different materials and textile structures. Textil. Res. J. 2018;88:1992–2012. doi: 10.1177/0040517517715085. DOI
Palanisamy S., Tunakova V., Tunak M., Militky J. Textile-based weft knit strain sensor: experimental investigation of the effect of stretching on electrical conductivity and electromagnetic shielding. J. Ind. Textil. 2022;52 doi: 10.1177/15280837221142825. DOI
Palanisamy S., Tunakova V., Hu S., Yang T., Kremenakova D., Venkataraman M., Petru M., Militky J. Electromagnetic interference shielding of metal coated ultrathin nonwoven fabrics and their factorial design. Polymers. 2021;13:484. doi: 10.3390/polym13040484. PubMed DOI PMC
Abdulla R., Delihasanlar E., Kizilcay Abdulla F.G., Yuzer A.H. Electromagnetic shielding characterization of conductive knitted fabrics. PIER M. 2017;56:33–41. doi: 10.2528/PIERM17011305. DOI
Varnaité S., Katunskis J. Influence of washing on the electric charge decay of fabrics with conductive yarns. Fibres Text. East. Eur. 2009;17:69–75.
Lu Z., Li D., Yuan Z. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction. Journal of Engineered Fibers and Fabrics. 2022;17 doi: 10.1177/15589250221081856. DOI
Chen H.C., Lee K.C., Lin J.H., Koch M. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J. Mater. Process. Technol. 2007;184:124–130. doi: 10.1016/j.jmatprotec.2006.11.030. DOI
Das N.C., Khastgir D., Chaki T.K., Chakraborty A. Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Appl. Sci. Manuf. 2000;31:1069–1081. doi: 10.1016/S1359-835X(00)00064-6. DOI
Ortlek H.G., Saracoglu O.G., Saritas O., Bilgin S. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers Polym. 2012;13:63–67. doi: 10.1007/s12221-012-0063-6. DOI
Sirková B.K., Tunáková V., Tunák M., Jezik K. Influence of woven fabric construction parameters on electromagnetic shielding effectiveness: Part I – weave influence. Textil. Res. J. 2022 doi: 10.1177/00405175221100390. DOI
Yang Y., Wang J., Liu Z., Wang Z. A new study on the influencing factors and mechanism of shielding effectiveness of woven fabrics containing stainless steel fibers. J. Ind. Textil. 2021;50:830–846. doi: 10.1177/1528083719846664. DOI
Gupta K.K., Abbas S.M., Abhyankar A.C. ‘Effect of yarn composition and fabric weave design on microwave and EMI shielding properties of hybrid woven fabrics. J. Textil. Inst. 2022;113:1862–1877. doi: 10.1080/00405000.2021.1954427. DOI
Padaki N.V., Alagirusamy R., Deopura B.L., Fangueiro R. Studies on preform properties of multilayer interlocked woven structures using fabric geometrical factors. J. Ind. Textil. 2010;39:327–346. doi: 10.1177/1528083709349885. DOI
Jou W.S. A novel structure of woven continuous-carbon fiber composites with high electromagnetic shielding. J. Electron. Mater. 2004;33:162–170. doi: 10.1007/s11664-004-0175-x. DOI
Marciniak K., Grabowska K.E., Stempień Z., Ciesielska-Wróbel I.L. Shielding of electromagnetic radiation by multilayer textile sets. Textil. Res. J. 2019;89:948–958. doi: 10.1177/0040517518760749. DOI
Safarova V., Militky J. Multifunctional metal composite textile shields against electromagnetic radiation-effect of various parameters on electromagnetic shielding effectiveness. Polym. Compos. 2017;38:309–323. doi: 10.1002/pc.23588. DOI
Adanur S., Tam C.A. On-machine interlocking of 3D laminate structures for composites. Compos. B Eng. 1997;28:497–506. doi: 10.1016/S1359-8368(96)00084-4. DOI
Singh M.K., Saraswat G., Mukhopadhyay S. Three-dimensional orthogonal woven hybrid fabrics in X band frequency region for electromagnetic shielding effectiveness. J. Text. Inst. 2023:1–8. doi: 10.1080/00405000.2023.2201045. DOI
Man-ning Z., Zhi-li Z., Xiang R., Jie C. Electromagnetic interference shielding performance of 3-D spacer fabric coated with reduced graphene oxide. carbon nanotubes. 2022;57:190–198.
Fan W., Li D., Li J., Li J., Yuan L., Xue L., Sun R., Meng J. Electromagnetic properties of three-dimensional woven carbon fiber fabric/epoxy composite. Textil. Res. J. 2018;88:2353–2361. doi: 10.1177/0040517517723022. DOI
Pandey D.N., Basu A., Kumar P., Baskey H.B. Electromagnetic shielding performance of three-dimensional woven fabrics with copper-based hybrid yarn in X-band frequency range. J. Ind. Textil. 2019;49:484–502. doi: 10.1177/1528083718791331. DOI
Jianjun Y., Wensuo M., Zuobin G., Chenhui J., Xianqing L. A model for predicting electromagnetic wave absorption of 3D bidirectional angle-interlock woven fabric. Polym. Test. 2021;100 doi: 10.1016/j.polymertesting.2021.107272. DOI
Xu F., Zhang K., Qiu Y. Light-weight, high-gain three-dimensional textile structural composite antenna. Compos. B Eng. 2020;185 doi: 10.1016/j.compositesb.2020.107781. DOI
Xu F., Wei B., Li W., Liu J., Liu W., Qiu Y. Cylindrical conformal single-patch microstrip antennas based on three dimensional woven glass fiber/epoxy resin composites. Compos. B Eng. 2015;78:331–337. doi: 10.1016/j.compositesb.2015.03.091. DOI
ISO Technical Committee, ISO 5084:1996: Textiles — Determination of thickness of textiles and textile products, n.d https://www.iso.org/standard/23348.html.
Internal Standard TUL, IS 23-107-01/01: Covering of Weaves. Technical University of Liberec; Liberec: 2004.
D09 Committee, Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, ASTM International, n.d 10.1520/D4935-18. DOI
Mohammadi Mofarah H., Shaikhzadeh Najar S., Etrati S.M. Investigating the electromagnetic shielding effectiveness of copper/cotton full Milano and 1 × 1 rib weft-knitted fabrics. J. Text. Inst. 2019;110:891–900. doi: 10.1080/00405000.2018.1531743. DOI
Soyaslan D., Çömlekçi S., Göktepe Ö. Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935. J. Textil. Inst. 2010;101:890–897. doi: 10.1080/00405000902945360. DOI
Ozen M.S., Sancak E., Beyit A., Usta I., Akalin M. Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Textil. Res. J. 2013;83:849–858. doi: 10.1177/0040517512461683. DOI
The MathWorks inc. Lilliefors test. 2024 https://se.mathworks.com/help/stats/lillietest.html
Stetco A., Dinmohammadi F., Zhao X., Robu V., Flynn D., Barnes M., Keane J., Nenadic G. Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy. 2019;133:620–635. doi: 10.1016/j.renene.2018.10.047. DOI
Liu Z., Wang X.C. Influence of fabric weave type on the effectiveness of electromagnetic shielding woven fabric. J. Electromagn. Waves Appl. 2012;26:1848–1856. doi: 10.1080/09205071.2012.717352. DOI
Krishnasamy J., Ramasamy A., Das A., Basu A. Effect of fabric cover and pore area distribution of carbon/stainless steel/polypropylene hybrid yarn-woven fabric on electromagnetic shielding effectiveness. J. Electron. Mater. 2016;45:3087–3100. doi: 10.1007/s11664-016-4391-y. DOI
Bedeloglu A. Investigation of electrical, electromagnetic shielding, and usage properties of woven fabrics made from different hybrid yarns containing stainless steel wires. J. Textil. Inst. 2013;104:1359–1373. doi: 10.1080/00405000.2013.806049. DOI
Tunáková V., Techniková L., Militký J. Influence of washing/drying cycles on fundamental properties of metal fiber-containing fabrics designed for electromagnetic shielding purposes. Textil. Res. J. 2017;87:175–192. doi: 10.1177/0040517515627168. DOI