Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity

. 2021 Dec 04 ; 13 (23) : . [epub] 20211204

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34883757

Grantová podpora
19-04925S Czech Science Foundation
TN01000008 Technology Agency of the Czech Republic

Novel stiff, tough, highly transparent and ultra-extensible self-assembled nanocomposite elastomers based on poly(2-methoxyethylacrylate) (polyMEA) were synthesized. The materials are physically crosslinked by small in-situ-formed silica nanospheres, sized 3-5 nm, which proved to be a very efficient macro-crosslinker in the self-assembled network architecture. Very high values of yield stress (2.3 MPa), tensile strength (3.0 MPa), and modulus (typically 10 MPa), were achieved in combination with ultra-extensibility: the stiffest sample was breaking at 1610% of elongation. Related nanocomposites doubly filled with nano-silica and clay nano-platelets were also prepared, which displayed interesting synergy effects of the fillers at some compositions. All the nanocomposites exhibit 'plasto-elastic' tensile behaviour in the 'as prepared' state: they display considerable energy absorption (and also 'necking' like plastics), but at the same time a large but not complete (50%) retraction of deformation. However, after the first large tensile deformation, the materials irreversibly switch to 'real elastomeric' tensile behaviour (with some creep). The initial 'plasto-elastic' stretching thus causes an internal rearrangement. The studied materials, which additionally are valuable due to their high transparency, could be of application interest as advanced structural materials in soft robotics, in implant technology, or in regenerative medicine. The presented study focuses on structure-property relationships, and on their effects on physical properties, especially on the complex tensile, elastic and viscoelastic behaviour of the polyMEA nanocomposites.

Zobrazit více v PubMed

Ulrich H. Introduction to Industrial Polymers. Macmillan Publishing Company Inc.; New York, NY, USA: 1982. ISBN-10 0029497906, ISBN-13 978-0029497906.

Haraguchi K., Takehisa T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002;14:1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI

Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI

Xia L.W., Xie R., Ju X.J., Wang W., Chen Q., Chu L.Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013;4:2226. doi: 10.1038/ncomms3226. PubMed DOI PMC

Goswami S.K., McAdam C.J., Hanton L.R., Moratti S.C. Hyperelastic Tough Gels through Macrocross-Linking. Macromol. Rapid Commun. 2017;38:1700103. doi: 10.1002/marc.201700103. PubMed DOI

Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC

Gaharwar K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI

Wang Q., Li L., Li Z., Guo S., Sun G. Environmentally Stable Polymer Gels with Super Deformability and High Recoverability Enhanced by Sub-5 nm Particles in the Nonvolatile Solvent. J. Polym. Sci. Part B Polym. Phys. 2019;57:713–721. doi: 10.1002/polb.24826. DOI

Liu R., Liang S., Tang X.Z., Yan D., Li X., Yu Z.Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012;22:14160–14167. doi: 10.1039/c2jm32541a. DOI

Hu Z., Chen G. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014;26:5950–5956. doi: 10.1002/adma.201400179. PubMed DOI

Haraguchi K., Uyama K., Tanimoto H. Self-healing in Nanocomposite Hydrogels. Macromol. Rapid Commun. 2011;32:1253–1258. doi: 10.1002/marc.201100248. PubMed DOI

Gao G., Du G., Sun Y., Fu J. Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Appl. Mater. Interfaces. 2015;7:5029–5037. doi: 10.1021/acsami.5b00704. PubMed DOI

Kharaguchi K., Li H.J., Masuda K., Takehisa T., Elliott E. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite. Hydrogels. Macromol. 2005;38:3482–3490. doi: 10.1021/ma047431c. DOI

Haraguchi K., Farnworth R., Ohbayashi A., Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–5741. doi: 10.1021/ma034366i. DOI

Haraguchi K., Li H.J. Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898–1905. doi: 10.1021/ma052468y. DOI

Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI

Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI

Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI

Matteucci S., van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI

Strachota F., Ribot L., Matějka P., Whelan L., Starovoytova J., Plestil M., Steinhart M., Slouf J., Hromadkova J., Kovarova M., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI

Strachota K., Rodzen F., Ribot M., Perchacz M., Trchová M., Steinhart L., Starovoytova M., Slouf B. Strachota, Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI

Strachota K., Rodzeń F., Ribot M., Trchová M., Steinhart L., Starovoytova E. Pavlova, Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI

Rodzeń K., Strachota A., Ribot F., Šlouf M. Effect of network mesh size on the thermo-mechanical properties of epoxy nanocomposites with the heavier homologue of POSS, the inorganic butylstannoxane cages. Eur. Polym. J. 2014;57:169–181. doi: 10.1016/j.eurpolymj.2014.05.016. DOI

Strachota K., Rodzeń V., Raus F., Ribot M., Janata E. Pavlova, Incorporation and chemical effect of Sn-POSS cages in poly(ethyl methacrylate) Eur. Polym. J. 2015;68:366–378. doi: 10.1016/j.eurpolymj.2015.04.024. DOI

Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI

Rodzeń K., Strachota A., Raus V., Pavlova E. Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix. Polym. Degrad. Stab. 2017;142:1–20. doi: 10.1016/j.polymdegradstab.2017.05.019. DOI

Strachota B., Strachota A., Horodecka S., Steinhart M., Kovářová J., Pavlova E., Ribot F. Polyurethane nanocomposites containing the chemically active inorganic Sn-POSS cages Reactive and Functional Polymers. React. Funct. Polym. 2019;143:104338. doi: 10.1016/j.reactfunctpolym.2019.104338. DOI

Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI

Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI

Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Depa K., Strachota A., Šlouf M., Brus J., Cimrová V. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens. Actuators B Chem. 2017;244:616–634. doi: 10.1016/j.snb.2016.12.121. DOI

Robbes S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI

Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI

Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI

Spirkova M., Brus J., Brozova L., Strachota A., Baldrian J., Urbanova M., Kotek J., Strachotova B., Slouf M. A view from inside onto the surface of self-assembled nanocomposite coatings. Prog. Org. Coat. 2008;61:145–155. doi: 10.1016/j.porgcoat.2007.07.032. DOI

Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI

Rahdar A., Hajinezhad M.R., Hamishekar H., Ghamkhari A., Kyzas G.Z. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym. Bull. 2021;78:4877–4898. doi: 10.1007/s00289-020-03354-6. DOI

Barani M., Hajinezhad M.R., Sargazi S., Zeeshan M., Rahdar A., Pandey S., Khatami M., Zargari F. Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers. 2021;13:3153. doi: 10.3390/polym13183153. PubMed DOI PMC

Arshad R., Tabish T.A., Kiani M.H., Ibrahim I.M., Shahnaz G., Rahdar A., Kang M., Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials. 2021;11:1086. doi: 10.3390/nano11051086. PubMed DOI PMC

Rahdar S., Rahdar A., Sattari M., Hafshejani L.D., Tolkou A.K., Kyzas G.Z. Barium/Cobalt@Polyethylene Glycol Nanocomposites for Dye Removal from Aqueous Solutions. Polymers. 2021;13:1161. doi: 10.3390/polym13071161. PubMed DOI PMC

Zhao P., Zhao W., Zhang K., Lin H., Zhang X. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J. Appl. Polym. Sci. 2020;137:48515. doi: 10.1002/app.48515. DOI

Carneiro J., Döll-Boscardin P.M., Fiorin B.C., Nadal J.M., Farago P.V., de Paula J.P. Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling. Braz. J. Pharm. Sci. 2016;52:645–651. doi: 10.1590/s1984-82502016000400008. DOI

Chun D.Y., Lee J.T., Kim M.K., Kwon Y.Z., Kim S.S. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers. Biomater. Res. 2016;20:24. doi: 10.1186/s40824-016-0073-3. PubMed DOI PMC

Wu Y., Wang H., Gao F., Xu Z., Dai F., Liu W. An Injectable Supramolecular Polymer Nanocomposite Hydrogel for Prevention of Breast Cancer Recurrence with Theranostic and Mammoplastic Functions. Adv. Funct. Mater. 2018;28:1801000. doi: 10.1002/adfm.201801000. DOI

Daniel W.F.M., Burdynska J., Vatankhah-Varnoosfaderani M., Matyjaszewski K., Paturej J., Rubinstein M., Dobrynin A.V., Sheiko S.S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016;15:183–190. doi: 10.1038/nmat4508. PubMed DOI

Haraguchi K., Ebato M., Takehisa T. Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency. Adv. Mater. 2006;18:2250–2254. doi: 10.1002/adma.200600143. DOI

Haraguchi K., Masatoshi S., Kotobuki N., Murata K. Thermoresponsible Cell Adhesion/Detachment on Transparent Nanocomposite Films Consisting of Poly(2-Methoxyethyl Acrylate) and Clay. J. Biomater. Sci. 2011;22:2389–2406. doi: 10.1163/092050610X540459. PubMed DOI

Haraguchi K. Development of Soft Nanocomposite Materials and Their Applications in Cell Culture and Tissue Engineering. J. Stem Cells Regen. Med. 2012;8:2–11. PubMed PMC

Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Onishi M., Shiroya T., Shimura K., Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—Relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–1481. doi: 10.1016/S0142-9612(00)00031-4. PubMed DOI

Hayashi M., Noro A., Matsushita Y. Highly Extensible Supramolecular Elastomers with Large Stress Generation Capability Originating from Multiple Hydrogen Bonds on the Long Soft Network Strands. Macromol. Rapid Commun. 2016;37:678–684. doi: 10.1002/marc.201500663. PubMed DOI

Asai F., Seki T., Sugawara-Narutaki A., Sato K., Odent J., Coulembier O., Raquez J.-M., Takeoka Y. Tough and Three-Dimensional-Printable Poly(2-methoxyethyl acrylate)–Silica Composite Elastomer with Antiplatelet Adhesion Property. ACS Appl. Mater. Interfaces. 2020;12:46621–46628. doi: 10.1021/acsami.0c11416. PubMed DOI

Silva M., Ferreira F.N., Alves N.M., Paiva M.C. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J. Nanobiotechnol. 2020;18:23. doi: 10.1186/s12951-019-0556-1. PubMed DOI PMC

Asadi N., Alizadeh E., Salehi R., Khalandi B., Davaran S., Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: A review. Artificial Cells. Nanomed. Biotechnol. 2018;46:465–471. doi: 10.1080/21691401.2017.1345924. PubMed DOI

Phakatkar H., Shirdar M.R., Qi M., Taheri M.M., Narayanan S., Foroozan T., Sharifi-Asl S., Huang Z., Agrawal M., Lu Y., et al. Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater. Sci. Eng. C. 2020;109:110497. doi: 10.1016/j.msec.2019.110497. PubMed DOI

Khan F., Tanaka M. Designing Smart Biomaterials for Tissue Engineering. Int. J. Mol. Sci. 2018;19:17. doi: 10.3390/ijms19010017. PubMed DOI PMC

Kitakami E., Aoki M., Sato C., Ishihata H., Tanaka M. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate) BioMed Res. Int. 2014;2014:102648. doi: 10.1155/2014/102648. PubMed DOI PMC

Lutecki M., Strachotová B., Uchman M., Brus J., Pleštil J., Šlouf M., Strachota A., Matějka L. Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym. J. 2006;38:527–541. doi: 10.1295/polymj.PJ2005112. DOI

Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI

Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI

Depa K., Strachota A., Šlouf M., Brus J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017;88:349–372. doi: 10.1016/j.eurpolymj.2017.01.038. DOI

Huerta-Angeles G., Hishchak K., Strachota A., Strachota B., Šlouf M., Matějka L. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur. Polym. J. 2014;59:341–352. doi: 10.1016/j.eurpolymj.2014.07.033. DOI

Strachota B., Matejka L., Zhigunov A., Konefal R., Spevacek J., Dybal J., Puffr R. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: Evolution of structure and gel formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI

Strachota B., Hodan J., Matějka L. Poly(N-isopropylacrylamide)-clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J. 2016;77:1–15. doi: 10.1016/j.eurpolymj.2016.02.011. DOI

Strachota B., Matějka L., Sikora A., Spěváček J., Konefal R., Zhigunov A., Šlouf M. Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: Structure and phase evolution. Soft Matter. 2017;13:1244–1256. doi: 10.1039/C6SM02278B. PubMed DOI

Strachota B., Šlouf M., Hodan J., Matějka L. Advanced two-step cryopolymerization to form superporous thermosensitive PNIPA/clay gels with unique mechanical properties and ultrafast swelling-deswelling kinetics. Colloid Polym. Sci. 2018;296:753–769. doi: 10.1007/s00396-018-4289-8. DOI

Strachota B., Strachota A., Steinhart M., Šlouf M., Hodan J. Ultra-extensible solvent-free elastomers based on nanocomposite poly(2-methoxyethylacrylate)/clay xerogels. J. Appl. Polym. Sci. 2021;138:e49836. doi: 10.1002/app.49836. DOI

Watanabe K., Miwa E., Asai F., Seki T., Urayama K., Nakatani T., Fujinami S., Hoshino T., Takata M., Liu C., et al. Highly Transparent and Tough Filler Composite Elastomer Inspired by the Cornea. ACS Mater. Lett. 2020;2:325–330. doi: 10.1021/acsmaterialslett.9b00520. DOI

Asai F., Seki T., Hoshino T., Liang X., Nakajima K., Takeoka Y. Silica Nanoparticle Reinforced Composites as Transparent Elastomeric Damping Materials. ACS Appl. Nano Mater. 2021;4:4140–4152. doi: 10.1021/acsanm.1c00472. DOI

Asai F., Seki T., Takeoka Y. Functional polymethacrylate composite elastomer filled with multilayer graphene and silica particles. Carbon Trends. 2021;4:100064. doi: 10.1016/j.cartre.2021.100064. DOI

Palik E.D., editor. Handbook of Optical Constants of Solids: 1. Academic Press Inc.; Cambridge, MA, USA: 1985. p. 760.

Technical Library: Refractive Index of Polymers by Index. Scientific Polymer Products Inc.; Ontario, NY, USA: [(accessed on 3 December 2021)]. Available online: https://scipoly.com/technical-library/refractive-index-of-polymers-by-index/

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...