Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-04925S
Czech Science Foundation
TN01000008
Technology Agency of the Czech Republic
PubMed
34883757
PubMed Central
PMC8659642
DOI
10.3390/polym13234254
PII: polym13234254
Knihovny.cz E-zdroje
- Klíčová slova
- clay, elastomers, nanocomposites, physical networks, poly(methoxyethyl acrylate), self-assembly, silica, tough elastomers, transparent,
- Publikační typ
- časopisecké články MeSH
Novel stiff, tough, highly transparent and ultra-extensible self-assembled nanocomposite elastomers based on poly(2-methoxyethylacrylate) (polyMEA) were synthesized. The materials are physically crosslinked by small in-situ-formed silica nanospheres, sized 3-5 nm, which proved to be a very efficient macro-crosslinker in the self-assembled network architecture. Very high values of yield stress (2.3 MPa), tensile strength (3.0 MPa), and modulus (typically 10 MPa), were achieved in combination with ultra-extensibility: the stiffest sample was breaking at 1610% of elongation. Related nanocomposites doubly filled with nano-silica and clay nano-platelets were also prepared, which displayed interesting synergy effects of the fillers at some compositions. All the nanocomposites exhibit 'plasto-elastic' tensile behaviour in the 'as prepared' state: they display considerable energy absorption (and also 'necking' like plastics), but at the same time a large but not complete (50%) retraction of deformation. However, after the first large tensile deformation, the materials irreversibly switch to 'real elastomeric' tensile behaviour (with some creep). The initial 'plasto-elastic' stretching thus causes an internal rearrangement. The studied materials, which additionally are valuable due to their high transparency, could be of application interest as advanced structural materials in soft robotics, in implant technology, or in regenerative medicine. The presented study focuses on structure-property relationships, and on their effects on physical properties, especially on the complex tensile, elastic and viscoelastic behaviour of the polyMEA nanocomposites.
Zobrazit více v PubMed
Ulrich H. Introduction to Industrial Polymers. Macmillan Publishing Company Inc.; New York, NY, USA: 1982. ISBN-10 0029497906, ISBN-13 978-0029497906.
Haraguchi K., Takehisa T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002;14:1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI
Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI
Xia L.W., Xie R., Ju X.J., Wang W., Chen Q., Chu L.Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013;4:2226. doi: 10.1038/ncomms3226. PubMed DOI PMC
Goswami S.K., McAdam C.J., Hanton L.R., Moratti S.C. Hyperelastic Tough Gels through Macrocross-Linking. Macromol. Rapid Commun. 2017;38:1700103. doi: 10.1002/marc.201700103. PubMed DOI
Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC
Gaharwar K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI
Wang Q., Li L., Li Z., Guo S., Sun G. Environmentally Stable Polymer Gels with Super Deformability and High Recoverability Enhanced by Sub-5 nm Particles in the Nonvolatile Solvent. J. Polym. Sci. Part B Polym. Phys. 2019;57:713–721. doi: 10.1002/polb.24826. DOI
Liu R., Liang S., Tang X.Z., Yan D., Li X., Yu Z.Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012;22:14160–14167. doi: 10.1039/c2jm32541a. DOI
Hu Z., Chen G. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014;26:5950–5956. doi: 10.1002/adma.201400179. PubMed DOI
Haraguchi K., Uyama K., Tanimoto H. Self-healing in Nanocomposite Hydrogels. Macromol. Rapid Commun. 2011;32:1253–1258. doi: 10.1002/marc.201100248. PubMed DOI
Gao G., Du G., Sun Y., Fu J. Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Appl. Mater. Interfaces. 2015;7:5029–5037. doi: 10.1021/acsami.5b00704. PubMed DOI
Kharaguchi K., Li H.J., Masuda K., Takehisa T., Elliott E. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite. Hydrogels. Macromol. 2005;38:3482–3490. doi: 10.1021/ma047431c. DOI
Haraguchi K., Farnworth R., Ohbayashi A., Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–5741. doi: 10.1021/ma034366i. DOI
Haraguchi K., Li H.J. Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898–1905. doi: 10.1021/ma052468y. DOI
Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI
Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI
Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI
Matteucci S., van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI
Strachota F., Ribot L., Matějka P., Whelan L., Starovoytova J., Plestil M., Steinhart M., Slouf J., Hromadkova J., Kovarova M., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI
Strachota K., Rodzen F., Ribot M., Perchacz M., Trchová M., Steinhart L., Starovoytova M., Slouf B. Strachota, Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI
Strachota K., Rodzeń F., Ribot M., Trchová M., Steinhart L., Starovoytova E. Pavlova, Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI
Rodzeń K., Strachota A., Ribot F., Šlouf M. Effect of network mesh size on the thermo-mechanical properties of epoxy nanocomposites with the heavier homologue of POSS, the inorganic butylstannoxane cages. Eur. Polym. J. 2014;57:169–181. doi: 10.1016/j.eurpolymj.2014.05.016. DOI
Strachota K., Rodzeń V., Raus F., Ribot M., Janata E. Pavlova, Incorporation and chemical effect of Sn-POSS cages in poly(ethyl methacrylate) Eur. Polym. J. 2015;68:366–378. doi: 10.1016/j.eurpolymj.2015.04.024. DOI
Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI
Rodzeń K., Strachota A., Raus V., Pavlova E. Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix. Polym. Degrad. Stab. 2017;142:1–20. doi: 10.1016/j.polymdegradstab.2017.05.019. DOI
Strachota B., Strachota A., Horodecka S., Steinhart M., Kovářová J., Pavlova E., Ribot F. Polyurethane nanocomposites containing the chemically active inorganic Sn-POSS cages Reactive and Functional Polymers. React. Funct. Polym. 2019;143:104338. doi: 10.1016/j.reactfunctpolym.2019.104338. DOI
Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI
Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI
Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI
Depa K., Strachota A., Šlouf M., Brus J., Cimrová V. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens. Actuators B Chem. 2017;244:616–634. doi: 10.1016/j.snb.2016.12.121. DOI
Robbes S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI
Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI
Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI
Spirkova M., Brus J., Brozova L., Strachota A., Baldrian J., Urbanova M., Kotek J., Strachotova B., Slouf M. A view from inside onto the surface of self-assembled nanocomposite coatings. Prog. Org. Coat. 2008;61:145–155. doi: 10.1016/j.porgcoat.2007.07.032. DOI
Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI
Rahdar A., Hajinezhad M.R., Hamishekar H., Ghamkhari A., Kyzas G.Z. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym. Bull. 2021;78:4877–4898. doi: 10.1007/s00289-020-03354-6. DOI
Barani M., Hajinezhad M.R., Sargazi S., Zeeshan M., Rahdar A., Pandey S., Khatami M., Zargari F. Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers. 2021;13:3153. doi: 10.3390/polym13183153. PubMed DOI PMC
Arshad R., Tabish T.A., Kiani M.H., Ibrahim I.M., Shahnaz G., Rahdar A., Kang M., Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials. 2021;11:1086. doi: 10.3390/nano11051086. PubMed DOI PMC
Rahdar S., Rahdar A., Sattari M., Hafshejani L.D., Tolkou A.K., Kyzas G.Z. Barium/Cobalt@Polyethylene Glycol Nanocomposites for Dye Removal from Aqueous Solutions. Polymers. 2021;13:1161. doi: 10.3390/polym13071161. PubMed DOI PMC
Zhao P., Zhao W., Zhang K., Lin H., Zhang X. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J. Appl. Polym. Sci. 2020;137:48515. doi: 10.1002/app.48515. DOI
Carneiro J., Döll-Boscardin P.M., Fiorin B.C., Nadal J.M., Farago P.V., de Paula J.P. Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling. Braz. J. Pharm. Sci. 2016;52:645–651. doi: 10.1590/s1984-82502016000400008. DOI
Chun D.Y., Lee J.T., Kim M.K., Kwon Y.Z., Kim S.S. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers. Biomater. Res. 2016;20:24. doi: 10.1186/s40824-016-0073-3. PubMed DOI PMC
Wu Y., Wang H., Gao F., Xu Z., Dai F., Liu W. An Injectable Supramolecular Polymer Nanocomposite Hydrogel for Prevention of Breast Cancer Recurrence with Theranostic and Mammoplastic Functions. Adv. Funct. Mater. 2018;28:1801000. doi: 10.1002/adfm.201801000. DOI
Daniel W.F.M., Burdynska J., Vatankhah-Varnoosfaderani M., Matyjaszewski K., Paturej J., Rubinstein M., Dobrynin A.V., Sheiko S.S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016;15:183–190. doi: 10.1038/nmat4508. PubMed DOI
Haraguchi K., Ebato M., Takehisa T. Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency. Adv. Mater. 2006;18:2250–2254. doi: 10.1002/adma.200600143. DOI
Haraguchi K., Masatoshi S., Kotobuki N., Murata K. Thermoresponsible Cell Adhesion/Detachment on Transparent Nanocomposite Films Consisting of Poly(2-Methoxyethyl Acrylate) and Clay. J. Biomater. Sci. 2011;22:2389–2406. doi: 10.1163/092050610X540459. PubMed DOI
Haraguchi K. Development of Soft Nanocomposite Materials and Their Applications in Cell Culture and Tissue Engineering. J. Stem Cells Regen. Med. 2012;8:2–11. PubMed PMC
Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Onishi M., Shiroya T., Shimura K., Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—Relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–1481. doi: 10.1016/S0142-9612(00)00031-4. PubMed DOI
Hayashi M., Noro A., Matsushita Y. Highly Extensible Supramolecular Elastomers with Large Stress Generation Capability Originating from Multiple Hydrogen Bonds on the Long Soft Network Strands. Macromol. Rapid Commun. 2016;37:678–684. doi: 10.1002/marc.201500663. PubMed DOI
Asai F., Seki T., Sugawara-Narutaki A., Sato K., Odent J., Coulembier O., Raquez J.-M., Takeoka Y. Tough and Three-Dimensional-Printable Poly(2-methoxyethyl acrylate)–Silica Composite Elastomer with Antiplatelet Adhesion Property. ACS Appl. Mater. Interfaces. 2020;12:46621–46628. doi: 10.1021/acsami.0c11416. PubMed DOI
Silva M., Ferreira F.N., Alves N.M., Paiva M.C. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J. Nanobiotechnol. 2020;18:23. doi: 10.1186/s12951-019-0556-1. PubMed DOI PMC
Asadi N., Alizadeh E., Salehi R., Khalandi B., Davaran S., Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: A review. Artificial Cells. Nanomed. Biotechnol. 2018;46:465–471. doi: 10.1080/21691401.2017.1345924. PubMed DOI
Phakatkar H., Shirdar M.R., Qi M., Taheri M.M., Narayanan S., Foroozan T., Sharifi-Asl S., Huang Z., Agrawal M., Lu Y., et al. Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater. Sci. Eng. C. 2020;109:110497. doi: 10.1016/j.msec.2019.110497. PubMed DOI
Khan F., Tanaka M. Designing Smart Biomaterials for Tissue Engineering. Int. J. Mol. Sci. 2018;19:17. doi: 10.3390/ijms19010017. PubMed DOI PMC
Kitakami E., Aoki M., Sato C., Ishihata H., Tanaka M. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate) BioMed Res. Int. 2014;2014:102648. doi: 10.1155/2014/102648. PubMed DOI PMC
Lutecki M., Strachotová B., Uchman M., Brus J., Pleštil J., Šlouf M., Strachota A., Matějka L. Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym. J. 2006;38:527–541. doi: 10.1295/polymj.PJ2005112. DOI
Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI
Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI
Depa K., Strachota A., Šlouf M., Brus J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017;88:349–372. doi: 10.1016/j.eurpolymj.2017.01.038. DOI
Huerta-Angeles G., Hishchak K., Strachota A., Strachota B., Šlouf M., Matějka L. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur. Polym. J. 2014;59:341–352. doi: 10.1016/j.eurpolymj.2014.07.033. DOI
Strachota B., Matejka L., Zhigunov A., Konefal R., Spevacek J., Dybal J., Puffr R. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: Evolution of structure and gel formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI
Strachota B., Hodan J., Matějka L. Poly(N-isopropylacrylamide)-clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J. 2016;77:1–15. doi: 10.1016/j.eurpolymj.2016.02.011. DOI
Strachota B., Matějka L., Sikora A., Spěváček J., Konefal R., Zhigunov A., Šlouf M. Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: Structure and phase evolution. Soft Matter. 2017;13:1244–1256. doi: 10.1039/C6SM02278B. PubMed DOI
Strachota B., Šlouf M., Hodan J., Matějka L. Advanced two-step cryopolymerization to form superporous thermosensitive PNIPA/clay gels with unique mechanical properties and ultrafast swelling-deswelling kinetics. Colloid Polym. Sci. 2018;296:753–769. doi: 10.1007/s00396-018-4289-8. DOI
Strachota B., Strachota A., Steinhart M., Šlouf M., Hodan J. Ultra-extensible solvent-free elastomers based on nanocomposite poly(2-methoxyethylacrylate)/clay xerogels. J. Appl. Polym. Sci. 2021;138:e49836. doi: 10.1002/app.49836. DOI
Watanabe K., Miwa E., Asai F., Seki T., Urayama K., Nakatani T., Fujinami S., Hoshino T., Takata M., Liu C., et al. Highly Transparent and Tough Filler Composite Elastomer Inspired by the Cornea. ACS Mater. Lett. 2020;2:325–330. doi: 10.1021/acsmaterialslett.9b00520. DOI
Asai F., Seki T., Hoshino T., Liang X., Nakajima K., Takeoka Y. Silica Nanoparticle Reinforced Composites as Transparent Elastomeric Damping Materials. ACS Appl. Nano Mater. 2021;4:4140–4152. doi: 10.1021/acsanm.1c00472. DOI
Asai F., Seki T., Takeoka Y. Functional polymethacrylate composite elastomer filled with multilayer graphene and silica particles. Carbon Trends. 2021;4:100064. doi: 10.1016/j.cartre.2021.100064. DOI
Palik E.D., editor. Handbook of Optical Constants of Solids: 1. Academic Press Inc.; Cambridge, MA, USA: 1985. p. 760.
Technical Library: Refractive Index of Polymers by Index. Scientific Polymer Products Inc.; Ontario, NY, USA: [(accessed on 3 December 2021)]. Available online: https://scipoly.com/technical-library/refractive-index-of-polymers-by-index/