Self-Healing and Super-Elastomeric PolyMEA-co-SMA Nanocomposites Crosslinked by Clay Platelets

. 2022 Oct 15 ; 8 (10) : . [epub] 20221015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36286158

Grantová podpora
ASRT-22-01 Czech Academy of Sciences

Novel solvent-free ultra-extensible, tough, and self-healing nanocomposite elastomers were synthesized. The self-assembled materials were based on the copolymer matrix poly(methoxyethyl acrylate-co-sodium methacrylate) physically crosslinked by clay nano-platelets ('poly[MEA-co-SMA]/clay'). Depending on the content of SMA, the super-elastomers were predominantly hydrophobic, water-swelling, or fully water-soluble, and hence repeatedly processible. The SMA co-monomer introduces a tremendous increase in tensile strength, an increase in toughness, while ultra-extensibility is preserved. By tuning the contents of nano-clay and SMA co-monomer, a very wide range of product properties was achieved, including extreme ultra-extensibility, or high stiffness combined with more moderate super-extensibility, or very different values of tensile strength. There was very attractive, great improvement in autonomous self-healing ability induced by SMA, combined with tremendously enhanced self-recovery of internal mechanical damage: even complete self-recovery could be achieved. The ionic SMA repeat units were found to assemble to multiplets, which are phase-separated in the hydrophobic polyMEA matrix. The dynamics of SMA-units-hopping between these aggregates was of key importance for the mechanical, visco-elastic, tensile, and self-healing properties. The studied super-elastomers are attractive as advanced self-healing materials in engineering, soft robotics, and in medical or implant applications.

Zobrazit více v PubMed

Ulrich H. Introduction to Industrial Polymers. Macmillan Publishing Company Inc.; New York, NY, USA: 1982. ISBN10: 0029497906, ISBN13: 9780029497906.

Haraguchi K., Takehisa T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002;14:1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI

Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI

Xia L.W., Xie R., Ju X.J., Wang W., Chen Q., Chu L.Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013;4:2226. doi: 10.1038/ncomms3226. PubMed DOI PMC

Goswami S.K., McAdam C.J., Hanton L.R., Moratti S.C. Hyperelastic Tough Gels through Macrocross-Linking. Macromol. Rapid Commun. 2017;38:1700103. doi: 10.1002/marc.201700103. PubMed DOI

Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC

Gaharwar A.K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI

Wang Q., Li L., Li Z., Guo S., Sun G. Environmentally Stable Polymer Gels with Super Deformability and High Recoverability Enhanced by Sub-5 nm Particles in the Nonvolatile Solvent. J. Polym. Sci. Part B: Polym. Phys. 2019;57:713–721. doi: 10.1002/polb.24826. DOI

Liu R., Liang S., Tang X.Z., Yan D., Li X., Yu Z.Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012;22:14160–14167. doi: 10.1039/c2jm32541a. DOI

Hu Z., Chen G. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014;26:5950–5956. doi: 10.1002/adma.201400179. PubMed DOI

Haraguchi K., Uyama K., Tanimoto H. Self-healing in Nanocomposite Hydrogels. Macromol. Rapid Commun. 2011;32:1253–1258. doi: 10.1002/marc.201100248. PubMed DOI

Gao G., Du G., Sun Y., Fu J. Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Appl. Mater. Interfaces. 2015;7:5029–5037. doi: 10.1021/acsami.5b00704. PubMed DOI

Haraguchi K., Li H.J., Masuda K., Takehisa T., Elliott E. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules. 2005;38:3482–3490. doi: 10.1021/ma047431c. DOI

Haraguchi K., Farnworth R., Ohbayashi A., Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–5741. doi: 10.1021/ma034366i. DOI

Haraguchi K., Li H.J. Mechanical properties and structure of polymer–Clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898–1905. doi: 10.1021/ma052468y. DOI

Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI

Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI

Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI

Matteucci S., van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI

Strachota A., Ribot F., Matějka L., Whelan P., Starovoytova L., Plestil J., Steinhart M., Slouf M., Hromadkova J., Kovarova J., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI

Strachota A., Rodzen K., Ribot F., Perchacz M., Trchová M., Steinhart M., Starovoytova L., Slouf M., Strachota B. Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI

Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI

Rodzeń K., Strachota A., Ribot F., Šlouf M. Effect of network mesh size on the thermo-mechanical properties of epoxy nanocomposites with the heavier homologue of POSS, the inorganic butylstannoxane cages. Eur. Polym. J. 2014;57:169–181. doi: 10.1016/j.eurpolymj.2014.05.016. DOI

Strachota A., Rodzeń K., Raus V., Ribot F., Janata M., Pavlova E. Incorporation and chemical effect of Sn-POSS cages in poly(ethyl methacrylate) Eur. Polym. J. 2015;68:366–378. doi: 10.1016/j.eurpolymj.2015.04.024. DOI

Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI

Rodzeń K., Strachota A., Raus V., Pavlova E. Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix. Polym. Degrad. Stab. 2017;142:1–20. doi: 10.1016/j.polymdegradstab.2017.05.019. DOI

Strachota B., Strachota A., Horodecka S., Steinhart M., Kovářová J., Pavlova E., Ribot F. Polyurethane nanocomposites containing the chemically active inorganic Sn-POSS cages Reactive and Functional Polymers. React. Funct. Polym. 2019;143:104338. doi: 10.1016/j.reactfunctpolym.2019.104338. DOI

Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI

Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI

Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Depa K., Strachota A., Šlouf M., Brus J., Cimrová V. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens. Actuators B-Chem. 2017;244:616–634. doi: 10.1016/j.snb.2016.12.121. DOI

Robbes A.S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI

Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI

Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI

Spirkova M., Brus J., Brozova L., Strachota A., Baldrian J., Urbanova M., Kotek J., Strachotova B., Slouf M. A view from inside onto the surface of self-assembled nanocomposite coatings. Prog. Org. Coat. 2008;61:145–155. doi: 10.1016/j.porgcoat.2007.07.032. DOI

Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI

Daniel W.F.M., Burdynska J., Vatankhah-Varnoosfaderani M., Matyjaszewski K., Paturej J., Rubinstein M., Dobrynin A.V., Sheiko S.S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016;15:183–190. doi: 10.1038/nmat4508. PubMed DOI

Haraguchi K., Ebato M., Takehisa T. Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency. Adv. Mater. 2006;18:2250–2254. doi: 10.1002/adma.200600143. DOI

Haraguchi K., Masatoshi S., Kotobuki N., Murata K. Thermoresponsible Cell Adhesion/Detachment on Transparent Nanocomposite Films Consisting of Poly(2-Methoxyethyl Acrylate) and Clay. J. Biomater. Sci. 2011;22:2389–2406. doi: 10.1163/092050610X540459. PubMed DOI

Haraguchi K. Development of Soft Nanocomposite Materials and Their Applications in Cell Culture and Tissue Engineering. [(accessed on 15 September 2022)];J. Stem. Cells Regen. Med. 2012 8:2–11. Available online: https://www.pubstemcell.com/monthly/008010200002.htm. PubMed PMC

Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Onishi M., Shiroya T., Shimura K., Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–1481. doi: 10.1016/S0142-9612(00)00031-4. PubMed DOI

Hayashi M., Noro A., Matsushita Y. Highly Extensible Supramolecular Elastomers with Large Stress Generation Capability Originating from Multiple Hydrogen Bonds on the Long Soft Network Strands. Macromol. Rapid Commun. 2016;37:678–684. doi: 10.1002/marc.201500663. PubMed DOI

Lutecki M., Strachotová B., Uchman M., Brus J., Pleštil J., Šlouf M., Strachota A., Matějka L. Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym. J. 2006;38:527–541. doi: 10.1295/polymj.PJ2005112. DOI

Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI

Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI

Depa K., Strachota A., Šlouf M., Brus J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017;88:349–372. doi: 10.1016/j.eurpolymj.2017.01.038. DOI

Huerta-Angeles G., Hishchak K., Strachota A., Strachota B., Šlouf M., Matějka L. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur. Polym. J. 2014;59:341–352. doi: 10.1016/j.eurpolymj.2014.07.033. DOI

Strachota B., Matejka L., Zhigunov A., Konefal R., Spevacek J., Dybal J., Puffr R. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: Evolution of structure and gel formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI

Strachota B., Hodan J., Matějka L. Poly(N-isopropylacrylamide)-clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J. 2016;77:1–15. doi: 10.1016/j.eurpolymj.2016.02.011. DOI

Strachota B., Matějka L., Sikora A., Spěváček J., Konefal R., Zhigunov A., Šlouf M. Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: Structure and phase evolution. Soft Matter. 2017;13:1244–1256. doi: 10.1039/C6SM02278B. PubMed DOI

Strachota B., Šlouf M., Hodan J., Matějka L. Advanced two-step cryopolymerization to form superporous thermosensitive PNIPA/clay gels with unique mechanical properties and ultrafast swelling-deswelling kinetics. Colloid Polym. Sci. 2018;296:753–769. doi: 10.1007/s00396-018-4289-8. DOI

Strachota B., Strachota A., Steinhart M., Šlouf M., Hodan J. Ultra-extensible solvent-free elastomers based on nanocomposite poly(2-methoxyethylacrylate)/clay xerogels. J. Appl. Polym. Sci. 2021;138:e49836. doi: 10.1002/app.49836. DOI

Byś K., Strachota B., Strachota A., Pavlova E., Steinhart M., Mossety-Leszczak B., Zając W. Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity. Polymers. 2021;13:4254. doi: 10.3390/polym13234254. PubMed DOI PMC

Strachota B., Strachota A., Gąsior G., Šlouf M. High-strength nanocomposite self-regenerating hydrogels reinforced by additional crosslinking with trivalent metal cations. J. Polym. Res. 2021;28:211. doi: 10.1007/s10965-021-02575-1. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties

. 2026 Jan 15 ; 19 (2) : . [epub] 20260115

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...