Self-Healing and Super-Elastomeric PolyMEA-co-SMA Nanocomposites Crosslinked by Clay Platelets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ASRT-22-01
Czech Academy of Sciences
PubMed
36286158
PubMed Central
PMC9601507
DOI
10.3390/gels8100657
PII: gels8100657
Knihovny.cz E-zdroje
- Klíčová slova
- montmorillonite, nanocomposites, physical networks, poly(methoxyethyl acrylate), self-assembly, self-healing, super-elastomers, tough elastomers, xerogels,
- Publikační typ
- časopisecké články MeSH
Novel solvent-free ultra-extensible, tough, and self-healing nanocomposite elastomers were synthesized. The self-assembled materials were based on the copolymer matrix poly(methoxyethyl acrylate-co-sodium methacrylate) physically crosslinked by clay nano-platelets ('poly[MEA-co-SMA]/clay'). Depending on the content of SMA, the super-elastomers were predominantly hydrophobic, water-swelling, or fully water-soluble, and hence repeatedly processible. The SMA co-monomer introduces a tremendous increase in tensile strength, an increase in toughness, while ultra-extensibility is preserved. By tuning the contents of nano-clay and SMA co-monomer, a very wide range of product properties was achieved, including extreme ultra-extensibility, or high stiffness combined with more moderate super-extensibility, or very different values of tensile strength. There was very attractive, great improvement in autonomous self-healing ability induced by SMA, combined with tremendously enhanced self-recovery of internal mechanical damage: even complete self-recovery could be achieved. The ionic SMA repeat units were found to assemble to multiplets, which are phase-separated in the hydrophobic polyMEA matrix. The dynamics of SMA-units-hopping between these aggregates was of key importance for the mechanical, visco-elastic, tensile, and self-healing properties. The studied super-elastomers are attractive as advanced self-healing materials in engineering, soft robotics, and in medical or implant applications.
Zobrazit více v PubMed
Ulrich H. Introduction to Industrial Polymers. Macmillan Publishing Company Inc.; New York, NY, USA: 1982. ISBN10: 0029497906, ISBN13: 9780029497906.
Haraguchi K., Takehisa T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002;14:1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI
Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI
Xia L.W., Xie R., Ju X.J., Wang W., Chen Q., Chu L.Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013;4:2226. doi: 10.1038/ncomms3226. PubMed DOI PMC
Goswami S.K., McAdam C.J., Hanton L.R., Moratti S.C. Hyperelastic Tough Gels through Macrocross-Linking. Macromol. Rapid Commun. 2017;38:1700103. doi: 10.1002/marc.201700103. PubMed DOI
Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC
Gaharwar A.K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI
Wang Q., Li L., Li Z., Guo S., Sun G. Environmentally Stable Polymer Gels with Super Deformability and High Recoverability Enhanced by Sub-5 nm Particles in the Nonvolatile Solvent. J. Polym. Sci. Part B: Polym. Phys. 2019;57:713–721. doi: 10.1002/polb.24826. DOI
Liu R., Liang S., Tang X.Z., Yan D., Li X., Yu Z.Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012;22:14160–14167. doi: 10.1039/c2jm32541a. DOI
Hu Z., Chen G. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014;26:5950–5956. doi: 10.1002/adma.201400179. PubMed DOI
Haraguchi K., Uyama K., Tanimoto H. Self-healing in Nanocomposite Hydrogels. Macromol. Rapid Commun. 2011;32:1253–1258. doi: 10.1002/marc.201100248. PubMed DOI
Gao G., Du G., Sun Y., Fu J. Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Appl. Mater. Interfaces. 2015;7:5029–5037. doi: 10.1021/acsami.5b00704. PubMed DOI
Haraguchi K., Li H.J., Masuda K., Takehisa T., Elliott E. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules. 2005;38:3482–3490. doi: 10.1021/ma047431c. DOI
Haraguchi K., Farnworth R., Ohbayashi A., Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–5741. doi: 10.1021/ma034366i. DOI
Haraguchi K., Li H.J. Mechanical properties and structure of polymer–Clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898–1905. doi: 10.1021/ma052468y. DOI
Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI
Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI
Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI
Matteucci S., van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI
Strachota A., Ribot F., Matějka L., Whelan P., Starovoytova L., Plestil J., Steinhart M., Slouf M., Hromadkova J., Kovarova J., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI
Strachota A., Rodzen K., Ribot F., Perchacz M., Trchová M., Steinhart M., Starovoytova L., Slouf M., Strachota B. Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI
Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI
Rodzeń K., Strachota A., Ribot F., Šlouf M. Effect of network mesh size on the thermo-mechanical properties of epoxy nanocomposites with the heavier homologue of POSS, the inorganic butylstannoxane cages. Eur. Polym. J. 2014;57:169–181. doi: 10.1016/j.eurpolymj.2014.05.016. DOI
Strachota A., Rodzeń K., Raus V., Ribot F., Janata M., Pavlova E. Incorporation and chemical effect of Sn-POSS cages in poly(ethyl methacrylate) Eur. Polym. J. 2015;68:366–378. doi: 10.1016/j.eurpolymj.2015.04.024. DOI
Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI
Rodzeń K., Strachota A., Raus V., Pavlova E. Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix. Polym. Degrad. Stab. 2017;142:1–20. doi: 10.1016/j.polymdegradstab.2017.05.019. DOI
Strachota B., Strachota A., Horodecka S., Steinhart M., Kovářová J., Pavlova E., Ribot F. Polyurethane nanocomposites containing the chemically active inorganic Sn-POSS cages Reactive and Functional Polymers. React. Funct. Polym. 2019;143:104338. doi: 10.1016/j.reactfunctpolym.2019.104338. DOI
Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI
Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI
Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI
Depa K., Strachota A., Šlouf M., Brus J., Cimrová V. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens. Actuators B-Chem. 2017;244:616–634. doi: 10.1016/j.snb.2016.12.121. DOI
Robbes A.S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI
Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI
Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI
Spirkova M., Brus J., Brozova L., Strachota A., Baldrian J., Urbanova M., Kotek J., Strachotova B., Slouf M. A view from inside onto the surface of self-assembled nanocomposite coatings. Prog. Org. Coat. 2008;61:145–155. doi: 10.1016/j.porgcoat.2007.07.032. DOI
Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI
Daniel W.F.M., Burdynska J., Vatankhah-Varnoosfaderani M., Matyjaszewski K., Paturej J., Rubinstein M., Dobrynin A.V., Sheiko S.S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016;15:183–190. doi: 10.1038/nmat4508. PubMed DOI
Haraguchi K., Ebato M., Takehisa T. Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency. Adv. Mater. 2006;18:2250–2254. doi: 10.1002/adma.200600143. DOI
Haraguchi K., Masatoshi S., Kotobuki N., Murata K. Thermoresponsible Cell Adhesion/Detachment on Transparent Nanocomposite Films Consisting of Poly(2-Methoxyethyl Acrylate) and Clay. J. Biomater. Sci. 2011;22:2389–2406. doi: 10.1163/092050610X540459. PubMed DOI
Haraguchi K. Development of Soft Nanocomposite Materials and Their Applications in Cell Culture and Tissue Engineering. [(accessed on 15 September 2022)];J. Stem. Cells Regen. Med. 2012 8:2–11. Available online: https://www.pubstemcell.com/monthly/008010200002.htm. PubMed PMC
Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Onishi M., Shiroya T., Shimura K., Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–1481. doi: 10.1016/S0142-9612(00)00031-4. PubMed DOI
Hayashi M., Noro A., Matsushita Y. Highly Extensible Supramolecular Elastomers with Large Stress Generation Capability Originating from Multiple Hydrogen Bonds on the Long Soft Network Strands. Macromol. Rapid Commun. 2016;37:678–684. doi: 10.1002/marc.201500663. PubMed DOI
Lutecki M., Strachotová B., Uchman M., Brus J., Pleštil J., Šlouf M., Strachota A., Matějka L. Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym. J. 2006;38:527–541. doi: 10.1295/polymj.PJ2005112. DOI
Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI
Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI
Depa K., Strachota A., Šlouf M., Brus J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017;88:349–372. doi: 10.1016/j.eurpolymj.2017.01.038. DOI
Huerta-Angeles G., Hishchak K., Strachota A., Strachota B., Šlouf M., Matějka L. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur. Polym. J. 2014;59:341–352. doi: 10.1016/j.eurpolymj.2014.07.033. DOI
Strachota B., Matejka L., Zhigunov A., Konefal R., Spevacek J., Dybal J., Puffr R. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: Evolution of structure and gel formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI
Strachota B., Hodan J., Matějka L. Poly(N-isopropylacrylamide)-clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J. 2016;77:1–15. doi: 10.1016/j.eurpolymj.2016.02.011. DOI
Strachota B., Matějka L., Sikora A., Spěváček J., Konefal R., Zhigunov A., Šlouf M. Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: Structure and phase evolution. Soft Matter. 2017;13:1244–1256. doi: 10.1039/C6SM02278B. PubMed DOI
Strachota B., Šlouf M., Hodan J., Matějka L. Advanced two-step cryopolymerization to form superporous thermosensitive PNIPA/clay gels with unique mechanical properties and ultrafast swelling-deswelling kinetics. Colloid Polym. Sci. 2018;296:753–769. doi: 10.1007/s00396-018-4289-8. DOI
Strachota B., Strachota A., Steinhart M., Šlouf M., Hodan J. Ultra-extensible solvent-free elastomers based on nanocomposite poly(2-methoxyethylacrylate)/clay xerogels. J. Appl. Polym. Sci. 2021;138:e49836. doi: 10.1002/app.49836. DOI
Byś K., Strachota B., Strachota A., Pavlova E., Steinhart M., Mossety-Leszczak B., Zając W. Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity. Polymers. 2021;13:4254. doi: 10.3390/polym13234254. PubMed DOI PMC
Strachota B., Strachota A., Gąsior G., Šlouf M. High-strength nanocomposite self-regenerating hydrogels reinforced by additional crosslinking with trivalent metal cations. J. Polym. Res. 2021;28:211. doi: 10.1007/s10965-021-02575-1. DOI