Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties

. 2026 Jan 15 ; 19 (2) : . [epub] 20260115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41598064

Grantová podpora
TN02000020 Technology Agency of the Czech Republic
BAS-25-03 Czech Academy of Sciences
IC-CZ/01/2025-2026 Bulgarian Academy of Sciences

Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix-filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus.

Zobrazit více v PubMed

Weber C.J., Haugaard V., Festersen R., Bertelsen G. Production and Applications of Biobased Packaging Materials for the Food Industry. Food Addit. Contam. 2002;19:172–177. doi: 10.1080/02652030110087483. PubMed DOI

Gamage A., Liyanapathiranage A., Manamperi A., Gunathilake C., Mani S., Merah O., Madhujith T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability. 2022;14:6085. doi: 10.3390/su14106085. DOI

Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic Effects in Mechanical Properties of PLA/PCL Blends with Optimized Composition, Processing, and Morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI

Paluch M., Ostrowska J., Tyński P., Sadurski W., Konkol M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022;30:728–740. doi: 10.1007/s10924-021-02235-x. DOI

Thakur R., Pristijono P., Scarlett C.J., Bowyer M., Singh S.P., Vuong Q.V. Starch-Based Films: Major Factors Affecting Their Properties. Int. J. Biol. Macromol. 2019;132:1079–1089. doi: 10.1016/j.ijbiomac.2019.03.190. PubMed DOI

Zhang Y., Rempel C., Liu Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014;54:1353–1370. doi: 10.1080/10408398.2011.636156. PubMed DOI

Rivadeneira-Velasco K.E., Utreras-Silva C.A., Díaz-Barrios A., Sommer-Márquez A.E., Tafur J.P., Michell R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers. 2021;13:3227. doi: 10.3390/polym13193227. PubMed DOI PMC

Daza-Orsini S.M., Medina-Jaramillo C., Caicedo-Chacon W.D., Ayala-Valencia G., López-Córdoba A. Isolation of Taro Peel Cellulose Nanofibers and Its Application in Improving Functional Properties of Taro Starch Nanocomposites Films. Int. J. Biol. Macromol. 2024;273:132951. doi: 10.1016/j.ijbiomac.2024.132951. PubMed DOI

Sabapathy P.C., Parthiban A., Bhusal C.K., Singh S., Sehgal R., Qi X. Recent Improvements in Starch Films with Cellulose and Its Derivatives—A Review. J. Taiwan. Inst. Chem. Eng. 2025;177:105920. doi: 10.1016/j.jtice.2024.105920. DOI

Lai D.S., Adnan S.A., Osman A.F., Ibrahim I., Haq H. Mechanical Properties of Thermoplastic Starch Biocomposite Films with Hybrid Fillers. J. Phys. Conf. Ser. 2021;2080:012011. doi: 10.1088/1742-6596/2080/1/012011. DOI

Medina-Jaramillo C., Coelho-Leandro G., Ayala-Valencia G., López-Córdoba A. Starch-Based Biocomposites Reinforced with Cellulose Nanofibers from Potato Peel Byproducts. Sci. Rep. 2025;15:38412. doi: 10.1038/s41598-025-22303-9. PubMed DOI PMC

Dai H., Sheng X., An L., Liu N., Yu J., Ma X. Preparation and Properties of Thermoplastic Starch/Montmorillonite Nanocomposites Using N,N-bis(2-hydroxyethyl)Formamide as a New Additive. Polym. Compos. 2012;33:225–231. doi: 10.1002/pc.22142. DOI

Pech-Cohuo S.C., Dzul-Cervantes M.A.D.A., Pérez-Pacheco E., Rosado J.A.C., Chim-Chi Y.A., Ríos-Soberanis C.R., Cuevas-Carballo Z.B., Uc-Cayetano E.G., Can-Herrera L.A., Ortíz-Fernández A., et al. Effect of Clays Incorporation on Properties of Thermoplastic Starch/Clay Composite Bio-Based Polymer Blends. Sci. Rep. 2024;14:19669. doi: 10.1038/s41598-024-69092-1. PubMed DOI PMC

Dejene B.K., Birilie A.A., Yizengaw M.A., Getahun S.A. Thermoplastic Starch-ZnO Nanocomposites: A Comprehensive Review of Their Applications in Functional Food Packaging. Int. J. Biol. Macromol. 2024;282:137099. doi: 10.1016/j.ijbiomac.2024.137099. PubMed DOI

Prasad V., Shaikh A.J., Kathe A.A., Bisoyi D.K., Verma A.K., Vigneshwaran N. Functional Behaviour of Paper Coated with Zinc Oxide–Soluble Starch Nanocomposites. J. Mater. Process. Technol. 2010;210:1962–1967. doi: 10.1016/j.jmatprotec.2010.07.009. DOI

Cao X., Chen Y., Chang P.R., Huneault M.A. Preparation and Properties of Plasticized Starch/Multiwalled Carbon Nanotubes Composites. J. Appl. Polym. Sci. 2007;106:1431–1437. doi: 10.1002/app.26799. DOI

Ramezani H., Behzad T., Bagheri R. Synergistic Effect of Graphene Oxide Nanoplatelets and Cellulose Nanofibers on Mechanical, Thermal, and Barrier Properties of Thermoplastic Starch. Polym. Adv. Technol. 2020;31:553–565. doi: 10.1002/pat.4796. DOI

Ren P., Shen T., Wang F., Wang X., Zhang Z. Study on Biodegradable Starch/OMMT Nanocomposites for Packaging Applications. J. Polym. Environ. 2009;17:203–207. doi: 10.1007/s10924-009-0139-6. DOI

Bagdi K., Müller P., Pukánszky B. Thermoplastic Starch/Layered Silicate Composites: Structure, Interaction, Properties. Compos. Interfaces. 2006;13:1–17. doi: 10.1163/156855406774964364. DOI

Cyras V.P., Manfredi L.B., Ton-That M.-T., Vázquez A. Physical and Mechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films. Carbohydr. Polym. 2008;73:55–63. doi: 10.1016/j.carbpol.2007.11.014. DOI

Liu J., Boo W.-J., Clearfield A., Sue H.-J. Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures. Mater. Manuf. Process. 2006;21:143–151. doi: 10.1080/amp-200068646. DOI

Majdzadeh-Ardakani K., Navarchian A.H., Sadeghi F. Optimization of Mechanical Properties of Thermoplastic Starch/Clay Nanocomposites. Carbohydr. Polym. 2010;79:547–554. doi: 10.1016/j.carbpol.2009.09.001. DOI

Aouada F.A., Mattoso L.H.C., Longo E. New Strategies in the Preparation of Exfoliated Thermoplastic Starch–Montmorillonite Nanocomposites. Ind. Crops Prod. 2011;34:1502–1508. doi: 10.1016/j.indcrop.2011.05.003. DOI

Chivrac F., Pollet E., Dole P., Avérous L. Starch-Based Nano-Biocomposites: Plasticizer Impact on the Montmorillonite Exfoliation Process. Carbohydr. Polym. 2010;79:941–947. doi: 10.1016/j.carbpol.2009.10.018. DOI

Slavutsky A.M., Bertuzzi M.A., Armada M. Water Barrier Properties of Starch-Clay Nanocomposite Films. Braz. J. Food Technol. 2012;15:208–218. doi: 10.1590/s1981-67232012005000014. DOI

Tang X., Alavi S., Herald T.J. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films. Cereal Chem. 2008;85:433–439. doi: 10.1094/CCHEM-85-3-0433. DOI

Kwaśniewska A., Chocyk D., Gładyszewski G., Borc J., Świetlicki M., Gładyszewska B. The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers. 2020;12:73. doi: 10.3390/polym12010073. PubMed DOI PMC

Brunchi C.-E., Morariu S. Laponite®—From Dispersion to Gel—Structure, Properties, and Applications. Molecules. 2024;29:2823. doi: 10.3390/molecules29122823. PubMed DOI PMC

Schmidt D., Shah D., Giannelis E.P. New Advances in Polymer/Layered Silicate Nanocomposites. Curr. Opin. Solid. State Mater. Sci. 2002;6:205–212. doi: 10.1016/S1359-0286(02)00049-9. DOI

Haraguchi K. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/Inorganic Network Structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI

Strachota B., Strachota A., Byś K., Pavlova E., Hodan J., Mossety-Leszczak B. Self-Healing and Super-Elastomeric PolyMEA-Co-SMA Nanocomposites Crosslinked by Clay Platelets. Gels. 2022;8:657. doi: 10.3390/gels8100657. PubMed DOI PMC

Strachota B., Strachota A., Barbosa S.M., Pavlova E., Tohamy H.-A.S., El-Sakhawy M., Kamel S. Potential Environmental Application of a Tough and Temperature-Responsive Nanocomposite Hydrogel Based on Poly(N-Isopropylacrylamide-Co-Sodium Methacrylate) and Clay. Int. J. Environ. Res. 2025;19:7. doi: 10.1007/s41742-024-00666-7. DOI

Loginov M., Lebovka N., Vorobiev E. Laponite Assisted Dispersion of Carbon Nanotubes in Water. J. Colloid Interface Sci. 2012;365:127–136. doi: 10.1016/j.jcis.2011.09.025. PubMed DOI

Aouada F.A., Mattoso L.H., Longo E. A Simple Procedure for the Preparation of Laponite and Thermoplastic Starch Nanocomposites: Structural, Mechanical, and Thermal Characterizations. J. Thermoplast. Compos. Mater. 2013;26:109–124. doi: 10.1177/0892705711419697. DOI

Islam H.B.M.Z., Susan M.A.B.H., Imran A.B. Effects of Plasticizers and Clays on the Physical, Chemical, Mechanical, Thermal, and Morphological Properties of Potato Starch-Based Nanocomposite Films. ACS Omega. 2020;5:17543–17552. doi: 10.1021/acsomega.0c02012. PubMed DOI PMC

Sharma C., Manepalli P.H., Thatte A., Thomas S., Kalarikkal N., Alavi S. Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid Polym. Sci. 2017;295:1695–1708. doi: 10.1007/s00396-017-4114-9. DOI

Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI

Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI

Kouka S., Gajdosova V., Strachota B., Sloufova I., Kuzel R., Stary Z., Slouf M. Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch. Polymers. 2025;17:1310. doi: 10.3390/polym17101310. PubMed DOI PMC

Wang X., Zhang X., Liu H., Wang N. Impact of Pre-Processing of Montmorillonite on the Properties of Melt-Extruded Thermoplastic Starch/Montmorillonite Nanocomposites. Starch Stärke. 2009;61:489–494. doi: 10.1002/star.200900086. DOI

Park H.-M., Li X., Jin C.-Z., Park C.-Y., Cho W.-J., Ha C.-S. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. Mater. Eng. 2002;287:553–558. doi: 10.1002/1439-2054(20020801)287:8<553::aid-mame553>3.0.co;2-3. DOI

Derungs I., Rico M., López J., Barral L., Montero B., Bouza R. Influence of the Hydrophilicity of Montmorillonite on Structure and Properties of Thermoplastic Wheat Starch/Montmorillonite Bionanocomposites. Polym. Adv. Technol. 2021;32:4479–4489. doi: 10.1002/pat.5450. DOI

Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI

Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC

Šlouf M., Lednický F., Wandrol P., Vacková T. 7 Polymer Surface Morphology: Characterization by Electron Microscopies. In: Sabbatini L., De Giglio E., editors. Polymer Surface Characterization. De Gruyter; Berlin, Germany: 2022. pp. 239–280.

Oliver W.C., Pharr G.M. Nanoindentation in Materials Research: Past, Present, and Future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI

Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and Micromechanical Properties of Polymers with Reduced Density of Entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI

Fischer-Cripps A.C. Nanoindentation. Springer; New York, NY, USA: 2004. Mechanical Engineering Series.

Slouf M., Henning S. Micromechanical Properties. In: Mark H.F., editor. Encyclopedia of Polymer Science and Technology. Wiley; Hoboken, NJ, USA: 2022. pp. 1–50.

Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC

Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of Macro-, Micro- and Nanomechanical Properties of Clinically-Relevant UHMWPE Formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI

Gajdošová V., Špírková M., Aguilar Costumbre Y., Krejčíková S., Strachota B., Šlouf M., Strachota A. Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(Urethane-Urea)/Silica Nanocomposites. Materials. 2023;16:1767. doi: 10.3390/ma16051767. PubMed DOI PMC

Schauer J., Sysel P., Maroušek V., Pientka Z., Pokorný J., Bleha M. Pervaporation and Gas Separation Membranes Made from Polyimide/Polydimethylsiloxane Block Copolymer. J. Appl. Polym. Sci. 1996;61:1333–1337. doi: 10.1002/(sici)1097-4628(19960822)61:8<1333::aid-app13>3.3.co;2-0. DOI

Okay O., Oppermann W. Polyacrylamide−Clay Nanocomposite Hydrogels: Rheological and Light Scattering Characterization. Macromolecules. 2007;40:3378–3387. doi: 10.1021/ma062929v. DOI

Strachota B., Matějka L., Zhigunov A., Konefał R., Spěváček J., Dybal J., Puffr R. Poly(N. -Isopropylacrylamide)–Clay Based Hydrogels Controlled by the Initiating Conditions: Evolution of Structure and Gel Formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI

Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Novelty, OH, USA: 2011.

Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/jmr.1992.1564. DOI

Tabor D. Oxford Classic Texts in the Physical Sciences. Oxford University Press; Oxford, UK: 1951. The Hardness of Metals.

Slouf M., Steinhart M., Nemecek P., Gajdosova V., Hodan J. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers. Materials. 2023;16:834. doi: 10.3390/ma16020834. PubMed DOI PMC

Mikešová J., Šlouf M., Gohs U., Popelková D., Vacková T., Vu N.H., Kratochvíl J., Zhigunov A. Nanocomposites of Polypropylene/Titanate Nanotubes: Morphology, Nucleation Effects of Nanoparticles and Properties. Polym. Bull. 2014;71:795–818. doi: 10.1007/s00289-013-1093-y. DOI

Kelnar I., Ujčič A., Kaprálková L., Krejčíková S., Zhigunov A., Novotný C., Padovec Z., Růžička M. Creep Resistance of HDPE/PA66 System: Effect of PA66 Phase Geometry and Graphite Nanoplatelets Addition. Polym. Test. 2020;85:106452. doi: 10.1016/j.polymertesting.2020.106452. DOI

Struik L.C.E. Some Problems in the Non-Linear Viscoelasticity of Amorphous Glassy Polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI

Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules. 2002;3:1101–1108. doi: 10.1021/bm020065p. PubMed DOI

Viguié J., Molina-Boisseau S., Dufresne A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007;7:1206–1216. doi: 10.1002/mabi.200700136. PubMed DOI

Sessini V., Raquez J., Lourdin D., Maigret J., Kenny J.M., Dubois P., Peponi L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromol. Chem. Phys. 2017;218:1700388. doi: 10.1002/macp.201700388. DOI

Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI

Angellier H., Molina-Boisseau S., Dole P., Dufresne A. Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules. 2006;7:531–539. doi: 10.1021/bm050797s. PubMed DOI

Lendvai L., Karger-Kocsis J., Kmetty Á., Drakopoulos S.X. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites. J. Appl. Polym. Sci. 2016;133:42397. doi: 10.1002/app.42397. DOI

Sessini V., Arrieta M.P., Fernández-Torres A., Peponi L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018;179:93–99. doi: 10.1016/j.carbpol.2017.09.070. PubMed DOI

Della Valle G., Buleon A., Carreau P.J., Lavoie P.-A., Vergnes B. Relationship between Structure and Viscoelastic Behavior of Plasticized Starch. J. Rheol. 1998;42:507–525. doi: 10.1122/1.550900. DOI

Tan B., Thomas N.L. A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites. J. Membr. Sci. 2016;514:595–612. doi: 10.1016/j.memsci.2016.05.026. DOI

Nielsen L.E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part. A Chem. 1967;1:929–942. doi: 10.1080/10601326708053745. DOI

Celzard A., McRae E., Deleuze C., Dufort M., Furdin G., Marêché J.F. Critical Concentration in Percolating Systems Containing a High-Aspect-Ratio Filler. Phys. Rev. B. 1996;53:6209–6214. doi: 10.1103/PhysRevB.53.6209. PubMed DOI

Liu Y., Wilkinson A. Rheological Percolation Behaviour and Fracture Properties of Nanocomposites of MWCNTs and a Highly Crosslinked Aerospace-Grade Epoxy Resin System. Compos. Part. A Appl. Sci. Manuf. 2018;105:97–107. doi: 10.1016/j.compositesa.2017.11.012. DOI

Špírková M., Brožová L., Hodan J., Kredatusová J., Krejčíková S., Zhigunov A., Pavličević J. Recyclable Polyurethane/Nanoclay Films. Polym. Compos. 2019;40:4079–4092. doi: 10.1002/pc.25269. DOI

Whitley D.M., Adolf D.B. Investigating the Permeability of Atmospheric Gases in Polyisobutylene Membranes via Computer Simulation. J. Membr. Sci. 2012;415–416:260–264. doi: 10.1016/j.memsci.2012.05.008. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...