Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000020
Technology Agency of the Czech Republic
BAS-25-03
Czech Academy of Sciences
IC-CZ/01/2025-2026
Bulgarian Academy of Sciences
PubMed
41598064
PubMed Central
PMC12842834
DOI
10.3390/ma19020347
PII: ma19020347
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable nanocomposite, clay, laponite, montmorillonite, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix-filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus.
Zobrazit více v PubMed
Weber C.J., Haugaard V., Festersen R., Bertelsen G. Production and Applications of Biobased Packaging Materials for the Food Industry. Food Addit. Contam. 2002;19:172–177. doi: 10.1080/02652030110087483. PubMed DOI
Gamage A., Liyanapathiranage A., Manamperi A., Gunathilake C., Mani S., Merah O., Madhujith T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability. 2022;14:6085. doi: 10.3390/su14106085. DOI
Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic Effects in Mechanical Properties of PLA/PCL Blends with Optimized Composition, Processing, and Morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI
Paluch M., Ostrowska J., Tyński P., Sadurski W., Konkol M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022;30:728–740. doi: 10.1007/s10924-021-02235-x. DOI
Thakur R., Pristijono P., Scarlett C.J., Bowyer M., Singh S.P., Vuong Q.V. Starch-Based Films: Major Factors Affecting Their Properties. Int. J. Biol. Macromol. 2019;132:1079–1089. doi: 10.1016/j.ijbiomac.2019.03.190. PubMed DOI
Zhang Y., Rempel C., Liu Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014;54:1353–1370. doi: 10.1080/10408398.2011.636156. PubMed DOI
Rivadeneira-Velasco K.E., Utreras-Silva C.A., Díaz-Barrios A., Sommer-Márquez A.E., Tafur J.P., Michell R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers. 2021;13:3227. doi: 10.3390/polym13193227. PubMed DOI PMC
Daza-Orsini S.M., Medina-Jaramillo C., Caicedo-Chacon W.D., Ayala-Valencia G., López-Córdoba A. Isolation of Taro Peel Cellulose Nanofibers and Its Application in Improving Functional Properties of Taro Starch Nanocomposites Films. Int. J. Biol. Macromol. 2024;273:132951. doi: 10.1016/j.ijbiomac.2024.132951. PubMed DOI
Sabapathy P.C., Parthiban A., Bhusal C.K., Singh S., Sehgal R., Qi X. Recent Improvements in Starch Films with Cellulose and Its Derivatives—A Review. J. Taiwan. Inst. Chem. Eng. 2025;177:105920. doi: 10.1016/j.jtice.2024.105920. DOI
Lai D.S., Adnan S.A., Osman A.F., Ibrahim I., Haq H. Mechanical Properties of Thermoplastic Starch Biocomposite Films with Hybrid Fillers. J. Phys. Conf. Ser. 2021;2080:012011. doi: 10.1088/1742-6596/2080/1/012011. DOI
Medina-Jaramillo C., Coelho-Leandro G., Ayala-Valencia G., López-Córdoba A. Starch-Based Biocomposites Reinforced with Cellulose Nanofibers from Potato Peel Byproducts. Sci. Rep. 2025;15:38412. doi: 10.1038/s41598-025-22303-9. PubMed DOI PMC
Dai H., Sheng X., An L., Liu N., Yu J., Ma X. Preparation and Properties of Thermoplastic Starch/Montmorillonite Nanocomposites Using N,N-bis(2-hydroxyethyl)Formamide as a New Additive. Polym. Compos. 2012;33:225–231. doi: 10.1002/pc.22142. DOI
Pech-Cohuo S.C., Dzul-Cervantes M.A.D.A., Pérez-Pacheco E., Rosado J.A.C., Chim-Chi Y.A., Ríos-Soberanis C.R., Cuevas-Carballo Z.B., Uc-Cayetano E.G., Can-Herrera L.A., Ortíz-Fernández A., et al. Effect of Clays Incorporation on Properties of Thermoplastic Starch/Clay Composite Bio-Based Polymer Blends. Sci. Rep. 2024;14:19669. doi: 10.1038/s41598-024-69092-1. PubMed DOI PMC
Dejene B.K., Birilie A.A., Yizengaw M.A., Getahun S.A. Thermoplastic Starch-ZnO Nanocomposites: A Comprehensive Review of Their Applications in Functional Food Packaging. Int. J. Biol. Macromol. 2024;282:137099. doi: 10.1016/j.ijbiomac.2024.137099. PubMed DOI
Prasad V., Shaikh A.J., Kathe A.A., Bisoyi D.K., Verma A.K., Vigneshwaran N. Functional Behaviour of Paper Coated with Zinc Oxide–Soluble Starch Nanocomposites. J. Mater. Process. Technol. 2010;210:1962–1967. doi: 10.1016/j.jmatprotec.2010.07.009. DOI
Cao X., Chen Y., Chang P.R., Huneault M.A. Preparation and Properties of Plasticized Starch/Multiwalled Carbon Nanotubes Composites. J. Appl. Polym. Sci. 2007;106:1431–1437. doi: 10.1002/app.26799. DOI
Ramezani H., Behzad T., Bagheri R. Synergistic Effect of Graphene Oxide Nanoplatelets and Cellulose Nanofibers on Mechanical, Thermal, and Barrier Properties of Thermoplastic Starch. Polym. Adv. Technol. 2020;31:553–565. doi: 10.1002/pat.4796. DOI
Ren P., Shen T., Wang F., Wang X., Zhang Z. Study on Biodegradable Starch/OMMT Nanocomposites for Packaging Applications. J. Polym. Environ. 2009;17:203–207. doi: 10.1007/s10924-009-0139-6. DOI
Bagdi K., Müller P., Pukánszky B. Thermoplastic Starch/Layered Silicate Composites: Structure, Interaction, Properties. Compos. Interfaces. 2006;13:1–17. doi: 10.1163/156855406774964364. DOI
Cyras V.P., Manfredi L.B., Ton-That M.-T., Vázquez A. Physical and Mechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films. Carbohydr. Polym. 2008;73:55–63. doi: 10.1016/j.carbpol.2007.11.014. DOI
Liu J., Boo W.-J., Clearfield A., Sue H.-J. Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures. Mater. Manuf. Process. 2006;21:143–151. doi: 10.1080/amp-200068646. DOI
Majdzadeh-Ardakani K., Navarchian A.H., Sadeghi F. Optimization of Mechanical Properties of Thermoplastic Starch/Clay Nanocomposites. Carbohydr. Polym. 2010;79:547–554. doi: 10.1016/j.carbpol.2009.09.001. DOI
Aouada F.A., Mattoso L.H.C., Longo E. New Strategies in the Preparation of Exfoliated Thermoplastic Starch–Montmorillonite Nanocomposites. Ind. Crops Prod. 2011;34:1502–1508. doi: 10.1016/j.indcrop.2011.05.003. DOI
Chivrac F., Pollet E., Dole P., Avérous L. Starch-Based Nano-Biocomposites: Plasticizer Impact on the Montmorillonite Exfoliation Process. Carbohydr. Polym. 2010;79:941–947. doi: 10.1016/j.carbpol.2009.10.018. DOI
Slavutsky A.M., Bertuzzi M.A., Armada M. Water Barrier Properties of Starch-Clay Nanocomposite Films. Braz. J. Food Technol. 2012;15:208–218. doi: 10.1590/s1981-67232012005000014. DOI
Tang X., Alavi S., Herald T.J. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films. Cereal Chem. 2008;85:433–439. doi: 10.1094/CCHEM-85-3-0433. DOI
Kwaśniewska A., Chocyk D., Gładyszewski G., Borc J., Świetlicki M., Gładyszewska B. The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers. 2020;12:73. doi: 10.3390/polym12010073. PubMed DOI PMC
Brunchi C.-E., Morariu S. Laponite®—From Dispersion to Gel—Structure, Properties, and Applications. Molecules. 2024;29:2823. doi: 10.3390/molecules29122823. PubMed DOI PMC
Schmidt D., Shah D., Giannelis E.P. New Advances in Polymer/Layered Silicate Nanocomposites. Curr. Opin. Solid. State Mater. Sci. 2002;6:205–212. doi: 10.1016/S1359-0286(02)00049-9. DOI
Haraguchi K. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/Inorganic Network Structures. Polym. J. 2011;43:223–241. doi: 10.1038/pj.2010.141. DOI
Strachota B., Strachota A., Byś K., Pavlova E., Hodan J., Mossety-Leszczak B. Self-Healing and Super-Elastomeric PolyMEA-Co-SMA Nanocomposites Crosslinked by Clay Platelets. Gels. 2022;8:657. doi: 10.3390/gels8100657. PubMed DOI PMC
Strachota B., Strachota A., Barbosa S.M., Pavlova E., Tohamy H.-A.S., El-Sakhawy M., Kamel S. Potential Environmental Application of a Tough and Temperature-Responsive Nanocomposite Hydrogel Based on Poly(N-Isopropylacrylamide-Co-Sodium Methacrylate) and Clay. Int. J. Environ. Res. 2025;19:7. doi: 10.1007/s41742-024-00666-7. DOI
Loginov M., Lebovka N., Vorobiev E. Laponite Assisted Dispersion of Carbon Nanotubes in Water. J. Colloid Interface Sci. 2012;365:127–136. doi: 10.1016/j.jcis.2011.09.025. PubMed DOI
Aouada F.A., Mattoso L.H., Longo E. A Simple Procedure for the Preparation of Laponite and Thermoplastic Starch Nanocomposites: Structural, Mechanical, and Thermal Characterizations. J. Thermoplast. Compos. Mater. 2013;26:109–124. doi: 10.1177/0892705711419697. DOI
Islam H.B.M.Z., Susan M.A.B.H., Imran A.B. Effects of Plasticizers and Clays on the Physical, Chemical, Mechanical, Thermal, and Morphological Properties of Potato Starch-Based Nanocomposite Films. ACS Omega. 2020;5:17543–17552. doi: 10.1021/acsomega.0c02012. PubMed DOI PMC
Sharma C., Manepalli P.H., Thatte A., Thomas S., Kalarikkal N., Alavi S. Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid Polym. Sci. 2017;295:1695–1708. doi: 10.1007/s00396-017-4114-9. DOI
Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI
Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI
Kouka S., Gajdosova V., Strachota B., Sloufova I., Kuzel R., Stary Z., Slouf M. Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch. Polymers. 2025;17:1310. doi: 10.3390/polym17101310. PubMed DOI PMC
Wang X., Zhang X., Liu H., Wang N. Impact of Pre-Processing of Montmorillonite on the Properties of Melt-Extruded Thermoplastic Starch/Montmorillonite Nanocomposites. Starch Stärke. 2009;61:489–494. doi: 10.1002/star.200900086. DOI
Park H.-M., Li X., Jin C.-Z., Park C.-Y., Cho W.-J., Ha C.-S. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. Mater. Eng. 2002;287:553–558. doi: 10.1002/1439-2054(20020801)287:8<553::aid-mame553>3.0.co;2-3. DOI
Derungs I., Rico M., López J., Barral L., Montero B., Bouza R. Influence of the Hydrophilicity of Montmorillonite on Structure and Properties of Thermoplastic Wheat Starch/Montmorillonite Bionanocomposites. Polym. Adv. Technol. 2021;32:4479–4489. doi: 10.1002/pat.5450. DOI
Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI
Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC
Šlouf M., Lednický F., Wandrol P., Vacková T. 7 Polymer Surface Morphology: Characterization by Electron Microscopies. In: Sabbatini L., De Giglio E., editors. Polymer Surface Characterization. De Gruyter; Berlin, Germany: 2022. pp. 239–280.
Oliver W.C., Pharr G.M. Nanoindentation in Materials Research: Past, Present, and Future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI
Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and Micromechanical Properties of Polymers with Reduced Density of Entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI
Fischer-Cripps A.C. Nanoindentation. Springer; New York, NY, USA: 2004. Mechanical Engineering Series.
Slouf M., Henning S. Micromechanical Properties. In: Mark H.F., editor. Encyclopedia of Polymer Science and Technology. Wiley; Hoboken, NJ, USA: 2022. pp. 1–50.
Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC
Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of Macro-, Micro- and Nanomechanical Properties of Clinically-Relevant UHMWPE Formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI
Gajdošová V., Špírková M., Aguilar Costumbre Y., Krejčíková S., Strachota B., Šlouf M., Strachota A. Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(Urethane-Urea)/Silica Nanocomposites. Materials. 2023;16:1767. doi: 10.3390/ma16051767. PubMed DOI PMC
Schauer J., Sysel P., Maroušek V., Pientka Z., Pokorný J., Bleha M. Pervaporation and Gas Separation Membranes Made from Polyimide/Polydimethylsiloxane Block Copolymer. J. Appl. Polym. Sci. 1996;61:1333–1337. doi: 10.1002/(sici)1097-4628(19960822)61:8<1333::aid-app13>3.3.co;2-0. DOI
Okay O., Oppermann W. Polyacrylamide−Clay Nanocomposite Hydrogels: Rheological and Light Scattering Characterization. Macromolecules. 2007;40:3378–3387. doi: 10.1021/ma062929v. DOI
Strachota B., Matějka L., Zhigunov A., Konefał R., Spěváček J., Dybal J., Puffr R. Poly(N. -Isopropylacrylamide)–Clay Based Hydrogels Controlled by the Initiating Conditions: Evolution of Structure and Gel Formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI
Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Novelty, OH, USA: 2011.
Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/jmr.1992.1564. DOI
Tabor D. Oxford Classic Texts in the Physical Sciences. Oxford University Press; Oxford, UK: 1951. The Hardness of Metals.
Slouf M., Steinhart M., Nemecek P., Gajdosova V., Hodan J. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers. Materials. 2023;16:834. doi: 10.3390/ma16020834. PubMed DOI PMC
Mikešová J., Šlouf M., Gohs U., Popelková D., Vacková T., Vu N.H., Kratochvíl J., Zhigunov A. Nanocomposites of Polypropylene/Titanate Nanotubes: Morphology, Nucleation Effects of Nanoparticles and Properties. Polym. Bull. 2014;71:795–818. doi: 10.1007/s00289-013-1093-y. DOI
Kelnar I., Ujčič A., Kaprálková L., Krejčíková S., Zhigunov A., Novotný C., Padovec Z., Růžička M. Creep Resistance of HDPE/PA66 System: Effect of PA66 Phase Geometry and Graphite Nanoplatelets Addition. Polym. Test. 2020;85:106452. doi: 10.1016/j.polymertesting.2020.106452. DOI
Struik L.C.E. Some Problems in the Non-Linear Viscoelasticity of Amorphous Glassy Polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI
Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules. 2002;3:1101–1108. doi: 10.1021/bm020065p. PubMed DOI
Viguié J., Molina-Boisseau S., Dufresne A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007;7:1206–1216. doi: 10.1002/mabi.200700136. PubMed DOI
Sessini V., Raquez J., Lourdin D., Maigret J., Kenny J.M., Dubois P., Peponi L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromol. Chem. Phys. 2017;218:1700388. doi: 10.1002/macp.201700388. DOI
Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI
Angellier H., Molina-Boisseau S., Dole P., Dufresne A. Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules. 2006;7:531–539. doi: 10.1021/bm050797s. PubMed DOI
Lendvai L., Karger-Kocsis J., Kmetty Á., Drakopoulos S.X. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites. J. Appl. Polym. Sci. 2016;133:42397. doi: 10.1002/app.42397. DOI
Sessini V., Arrieta M.P., Fernández-Torres A., Peponi L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018;179:93–99. doi: 10.1016/j.carbpol.2017.09.070. PubMed DOI
Della Valle G., Buleon A., Carreau P.J., Lavoie P.-A., Vergnes B. Relationship between Structure and Viscoelastic Behavior of Plasticized Starch. J. Rheol. 1998;42:507–525. doi: 10.1122/1.550900. DOI
Tan B., Thomas N.L. A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites. J. Membr. Sci. 2016;514:595–612. doi: 10.1016/j.memsci.2016.05.026. DOI
Nielsen L.E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part. A Chem. 1967;1:929–942. doi: 10.1080/10601326708053745. DOI
Celzard A., McRae E., Deleuze C., Dufort M., Furdin G., Marêché J.F. Critical Concentration in Percolating Systems Containing a High-Aspect-Ratio Filler. Phys. Rev. B. 1996;53:6209–6214. doi: 10.1103/PhysRevB.53.6209. PubMed DOI
Liu Y., Wilkinson A. Rheological Percolation Behaviour and Fracture Properties of Nanocomposites of MWCNTs and a Highly Crosslinked Aerospace-Grade Epoxy Resin System. Compos. Part. A Appl. Sci. Manuf. 2018;105:97–107. doi: 10.1016/j.compositesa.2017.11.012. DOI
Špírková M., Brožová L., Hodan J., Kredatusová J., Krejčíková S., Zhigunov A., Pavličević J. Recyclable Polyurethane/Nanoclay Films. Polym. Compos. 2019;40:4079–4092. doi: 10.1002/pc.25269. DOI
Whitley D.M., Adolf D.B. Investigating the Permeability of Atmospheric Gases in Polyisobutylene Membranes via Computer Simulation. J. Membr. Sci. 2012;415–416:260–264. doi: 10.1016/j.memsci.2012.05.008. DOI