A Hybrid Grey Wolf Optimizer for Process Planning Optimization with Precedence Constraints
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34885512
PubMed Central
PMC8658175
DOI
10.3390/ma14237360
PII: ma14237360
Knihovny.cz E-resources
- Keywords
- constraint handling, crossover, grey wolf optimizer, mutation, precedence constraints, process planning optimization, selection,
- Publication type
- Journal Article MeSH
Process planning optimization is a well-known NP-hard combinatorial problem extensively studied in the scientific community. Its main components include operation sequencing, selection of manufacturing resources and determination of appropriate setup plans. These problems require metaheuristic-based approaches in order to be effectively and efficiently solved. Therefore, to optimize the complex process planning problem, a novel hybrid grey wolf optimizer (HGWO) is proposed. The traditional grey wolf optimizer (GWO) is improved by employing genetic strategies such as selection, crossover and mutation which enhance global search abilities and convergence of the traditional GWO. Precedence relationships among machining operations are taken into account and precedence constraints are modeled using operation precedence graphs and adjacency matrices. Constraint handling heuristic procedure is adopted to move infeasible solutions to a feasible domain. Minimization of the total weighted machining cost of a process plan is adopted as the objective and three experimental studies that consider three different prismatic parts are conducted. Comparative analysis of the obtained cost values, as well as the convergence analysis, are performed and the HGWO approach demonstrated effectiveness and flexibility in finding optimal and near-optimal process plans. On the other side, comparative analysis of computational times and execution times of certain MATLAB functions showed that the HGWO have good time efficiency but limited since it requires more time compared to considered hybrid and traditional algorithms. Potential directions to improving efficiency and performances of the proposed approach are given in conclusions.
See more in PubMed
Xu X., Wang L., Newman S.T. Computer-aided process planning—A critical review of recent developments and future trends. Int. J. Comput. Integr. Manuf. 2011;24:518632. doi: 10.1080/0951192X.2010.518632. DOI
Blum C., Roli A. Metaheuristics in combinatorial optimization. ACM Comput. Surv. 2003;35:268–308. doi: 10.1145/937503.937505. DOI
Zhang F., Zhang Y., Nee A. Using genetic algorithms in process planning for job shop machining. IEEE Trans. Evol. Comput. 1997;1:278–289. doi: 10.1109/4235.687888. DOI
Salehi M., Bahreininejad A. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining. J. Intell. Manuf. 2011;22:643–652. doi: 10.1007/s10845-010-0382-7. PubMed DOI PMC
Li W., Ong S.K., Nee A.Y.C. Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 2002;40:1899–1922. doi: 10.1080/00207540110119991. DOI
Kafashi S. Integrated setup planning and operation sequencing (ISOS) using genetic algorithm. Int. J. Adv. Manuf. Technol. 2011;56:589–600. doi: 10.1007/s00170-011-3202-0. DOI
Cai N., Wang L., Feng H.-Y. GA-based adaptive setup planning toward process planning and scheduling integration. Int. J. Prod. Res. 2009;47:2745–2766. doi: 10.1080/00207540701663516. DOI
Huang W., Hu Y., Cai L. An effective hybrid graph and genetic algorithm approach to process planning optimization for prismatic parts. Int. J. Adv. Manuf. Technol. 2012;62:1219–1232. doi: 10.1007/s00170-011-3870-9. DOI
Li S., Liu Y., Li Y., Landers R.G., Tang L. Process planning optimization for parallel drilling of blind holes using a two phase genetic algorithm. J. Intell. Manuf. 2013;24:791–804. doi: 10.1007/s10845-012-0628-7. DOI
Su Y., Chu X., Zhang Z., Chen D. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach. Adv. Mech. Eng. 2015;7:1687814015581241. doi: 10.1177/1687814015581241. DOI
Su Y., Chu X., Chen D., Sun X. A genetic algorithm for operation sequencing in CAPP using edge selection based encoding strategy. J. Intell. Manuf. 2018;29:313–332. doi: 10.1007/s10845-015-1109-6. DOI
Candan G., Yazgan H.R. Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. Int. J. Prod. Res. 2014;53:897–915. doi: 10.1080/00207543.2014.939244. DOI
Luo Y., Pan Y., Li C., Tang H. A hybrid algorithm combining genetic algorithm and variable neighborhood search for process sequencing optimization of large-size problem. Int. J. Comput. Integr. Manuf. 2020;33:962–981. doi: 10.1080/0951192X.2020.1780318. DOI
Liu X.-J., Yi H., Ni Z.-H. Application of ant colony optimization algorithm in process planning optimization. J. Intell. Manuf. 2013;24:1–13. doi: 10.1007/s10845-010-0407-2. DOI
Wang J., Fan X., Wan S. A Graph-Based Ant Colony Optimization Approach for Process Planning. Sci. World J. 2014;2014:1–11. doi: 10.1155/2014/271895. PubMed DOI PMC
Wang J., Wu X., Fan X. A two-stage ant colony optimization approach based on a directed graph for process planning. Int. J. Adv. Manuf. Technol. 2015;80:839–850. doi: 10.1007/s00170-015-7065-7. DOI
Hu Q., Qiao L., Peng G. An ant colony approach to operation sequencing optimization in process planning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017;231:470–489. doi: 10.1177/0954405415616786. DOI
Li W., Wang L., Li X., Gao L. Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing. Springer; Singapore: 2011. Intelligent Optimisation for Integrated Process Planning and Scheduling; pp. 305–324.
Li X., Gao L., Wen X. Application of an efficient modified particle swarm optimization algorithm for process planning. Int. J. Adv. Manuf. Technol. 2013;67:1355–1369. doi: 10.1007/s00170-012-4572-7. DOI
Petrović M., Mitić M., Vuković N., Miljković Z. Chaotic particle swarm optimization algorithm for flexible process planning. Int. J. Adv. Manuf. Technol. 2016;85:2535–2555. doi: 10.1007/s00170-015-7991-4. DOI
Miljković Z., Petrović M. Application of modified multi-objective particle swarm optimisation algorithm for flexible process planning problem. Int. J. Comput. Integr. Manuf. 2017;30:271–291. doi: 10.1080/0951192X.2016.1145804. DOI
Dou J., Li J., Su C. A discrete particle swarm optimisation for operation sequencing in CAPP. Int. J. Prod. Res. 2018;56:3795–3814. doi: 10.1080/00207543.2018.1425015. DOI
Lian K., Zhang C., Shao X., Gao L. Optimization of process planning with various flexibilities using an imperialist competitive algorithm. Int. J. Adv. Manuf. Technol. 2012;59:815–828. doi: 10.1007/s00170-011-3527-8. DOI
Wen X.-Y., Li X.-Y., Gao L., Sang H.-Y. Honey bees mating optimization algorithm for process planning problem. J. Intell. Manuf. 2014;25:459–472. doi: 10.1007/s10845-012-0696-8. DOI
Lv S., Qiao L. A cross-entropy-based approach for the optimization of flexible process planning. Int. J. Adv. Manuf. Technol. 2013;68:2099–2110. doi: 10.1007/s00170-013-4815-2. DOI
Wang J., Fan X., Zhao A., Yang M. A Hybrid Bat Algorithm for Process Planning Problem. IFAC-PapersOnLine. 2015;48:1708–1713. doi: 10.1016/j.ifacol.2015.06.332. DOI
Musharavati F., Hamouda A.S.M. Enhanced simulated-annealing-based algorithms and their applications to process planning in reconfigurable manufacturing systems. Adv. Eng. Softw. 2012;45:80–90. doi: 10.1016/j.advengsoft.2011.09.017. DOI
Mohammadi G., Karampourhaghghi A., Samaei F. A multi-objective optimisation model to integrating flexible process planning and scheduling based on hybrid multi-objective simulated annealing. Int. J. Prod. Res. 2012;50:5063–5076. doi: 10.1080/00207543.2011.631602. DOI
Xu C., Zhang S., Huang R., Huang B., Li X. NC process reuse-oriented flexible process planning optimization approach for prismatic parts. Int. J. Adv. Manuf. Technol. 2016;87:329–351. doi: 10.1007/s00170-016-8460-4. DOI
Lian K., Zhang C., Shao X., Zeng Y. A multi-dimensional tabu search algorithm for the optimization of process planning. Sci. China Ser. E Technol. Sci. 2011;54:3211–3219. doi: 10.1007/s11431-011-4594-7. DOI
Falih A., Shammari A.Z.M. Hybrid constrained permutation algorithm and genetic algorithm for process planning problem. J. Intell. Manuf. 2020;31:1079–1099. doi: 10.1007/s10845-019-01496-7. DOI
Gao B., Hu X., Peng Z., Song Y. Application of intelligent water drop algorithm in process planning optimization. Int. J. Adv. Manuf. Technol. 2020;106:5199–5211. doi: 10.1007/s00170-019-04850-4. DOI
Kizys R., Juan A.A., Sawik B., Calvet L. A Biased-Randomized Iterated Local Search Algorithm for Rich Portfolio Optimization. Appl. Sci. 2019;9:3509. doi: 10.3390/app9173509. DOI
Sawik T., Sawik B. A rough cut cybersecurity investment using portfolio of security controls with maximum cybersecurity value. Int. J. Prod. Res. 2021:1–17. doi: 10.1080/00207543.2021.1994166. DOI
Milosevic M., Đurđev M., Lukić D., Antić A., Ungureanu N. Intelligent Process Planning for Smart Factory and Smart Manufacturing; Proceedings of the 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing; Belgrade, Serbia. 1–4 June 2020; Cham, Switzerland: Springer; 2020. pp. 205–214. DOI
Djurdjev M., Cep R., Lukic D., Antic A., Popovic B., Milosevic M. A Genetic Crow Search Algorithm for Optimization of Operation Sequencing in Process Planning. Appl. Sci. 2021;11:1981. doi: 10.3390/app11051981. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Zhang Y., Luo X., Zhang B., Zhang S. Semantic approach to the automatic recognition of machining features. Int. J. Adv. Manuf. Technol. 2017;89:417–437. doi: 10.1007/s00170-016-9056-8. DOI
Li W.D., Ong S.K., Nee A.Y.C. (Series on Manufacturing Systems and Technology).Integrated and Collaborative Product Development Environment—Technologies and Implementations. 2006;Volume 2 doi: 10.1142/9789812774156. DOI
Faheem W., Hayes C., Castano J., Gaines D. In What is manufacturing interaction?; Proceedings of the DETC’98, ASME Design Engineering Technical Conferences; Atlanta, GA, USA. 13–16 September 1998.
Dou J., Zhao X., Su C. An Improved Genetic Algorithm for Optimization of Operation Sequencing; Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA); Changchun, China. 5–8 August 2018; pp. 695–700.
Guo Y.W., Mileham A.R., Owen G.W., Li W.D. Operation sequencing optimization using a particle swarm optimization approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006;220:1945–1958. doi: 10.1243/09544054JEM647. DOI
Ahmed R., Nazir A., Mahadzir S., Shorfuzzaman M., Islam J. Niching Grey Wolf Optimizer for Multimodal Optimization Problems. Appl. Sci. 2021;11:4795. doi: 10.3390/app11114795. DOI
Yue Z., Zhang S., Xiao W. A Novel Hybrid Algorithm Based on Grey Wolf Optimizer and Fireworks Algorithm. Sensors. 2020;20:2147. doi: 10.3390/s20072147. PubMed DOI PMC
Wang Y., Wang W. Quantum-Inspired Differential Evolution with Grey Wolf Optimizer for 0-1 Knapsack Problem. Mathematics. 2021;9:1233. doi: 10.3390/math9111233. DOI
Martin B., Marot J., Bourennane S. Improved Discrete Grey Wolf Optimizer; Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO); Rome, Italy. 3–7 September 2018; pp. 494–498.
Jiang T., Zhang C. Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases. IEEE Access. 2018;6:26231–26240. doi: 10.1109/ACCESS.2018.2833552. DOI
Qin H., Fan P., Tang H., Huang P., Fang B., Pan S. An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint. Comput. Ind. Eng. 2019;128:458–476. doi: 10.1016/j.cie.2018.12.061. DOI
Premkumar M., Jangir P., Kumar B.S., Alqudah M.A., Nisar K.S. Multi-Objective Grey Wolf Optimization Algorithm for Solving Real-World BLDC Motor Design Problem. Comput. Mater. Contin. 2022;70:2435–2452. doi: 10.32604/cmc.2022.016488. DOI
Zhang H., Buchmeister B., Li X., Ojstersek R. Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop Scheduling Environment. Mathematics. 2021;9:909. doi: 10.3390/math9080909. DOI