User-Centred Design of a Final Results Report for Participants in Multi-Sensor Personal Air Pollution Exposure Monitoring Campaigns
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34886269
PubMed Central
PMC8656880
DOI
10.3390/ijerph182312544
PII: ijerph182312544
Knihovny.cz E-resources
- Keywords
- air pollution exposure campaign, communication, design thinking, focus group, report to participants, user-centred design,
- MeSH
- Air Pollutants * analysis MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Cities MeSH
- Environmental Exposure analysis MeSH
- Air Pollution * analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Cities MeSH
- Names of Substances
- Air Pollutants * MeSH
Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.
Atmospheric Chemistry and Innovative Technologies Laboratory NCSR Demokritos 15310 Athens Greece
Department of Environmental Sciences Jožef Stefan Institute 1000 Ljubljana Slovenia
EUCENTRE European Centre for Training and Research in Earthquake Engineering 27100 Pavia Italy
Jožef Stefan International Postgraduate School 1000 Ljubljana Slovenia
Laboratory of Chemistry and Environment Aix Marseille University 13003 Marseille France
RECETOX Faculty of Science Masaryk University 62500 Brno Czech Republic
Swiss Tropical and Public Health Institute CH 4051 Basel Switzerland
See more in PubMed
Fanti G., Borghi F., Spinazzè A., Rovelli S., Campagnolo D., Keller M., Cattaneo A., Cauda E., Cavallo D.M. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors. 2021;21:4513. doi: 10.3390/s21134513. PubMed DOI PMC
Languille B., Gros V., Bonnaire N., Pommier C., Honoré C., Debert C., Gauvin L., Srairi S., Annesi-Maesano I., Chaix B., et al. A methodology for the characterization of portable sensors for air quality measure with the goal of deployment in citizen science. Sci. Total Environ. 2020;708:134698. doi: 10.1016/j.scitotenv.2019.134698. PubMed DOI
Dias D., Tchepel O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. Int. J. Environ. Res. Public Health. 2018;15:558. doi: 10.3390/ijerph15030558. PubMed DOI PMC
Adams C., Riggs P., Volckens J. Development of a method for personal, spatiotemporal exposure assessment. J. Environ. Monit. 2009;11:1331–1339. doi: 10.1039/b903841h. PubMed DOI
De Nazelle A., Seto E., Donaire-Gonzalez D., Mendez M., Matamala J., Nieuwenhuijsen M.J., Jerrett M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013;176:92–99. doi: 10.1016/j.envpol.2012.12.032. PubMed DOI PMC
Brunekreef B., Strak M., Chen J., Andersen Z.J., Atkinson R., Bauwelinck M., Bellander T., Boutron-Ruault M.-C., Brandt J., Carey I., et al. Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM2.5, BC, NO2, and O3: An Analysis of European Cohorts in the ELAPSE Project. Health Effects Institute; Boston, MA, USA: 2021. PubMed PMC
Huttunen K., Siponen T., Salonen I., Yli-Tuomi T., Aurela M., Dufva H., Hillamo R., Linkola E., Pekkanen J., Pennanen A., et al. Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. Environ. Res. 2012;116:44–51. doi: 10.1016/j.envres.2012.04.004. PubMed DOI
Lepeule J., Laden F., Dockery D., Schwartz J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012;120:965–970. doi: 10.1289/ehp.1104660. PubMed DOI PMC
Dennis B.K. Understanding Participant Experiences: Reflections of a Novice Research Participant. Int. J. Qual. Methods. 2014;13:395–410. doi: 10.1177/160940691401300121. DOI
Giannini C.M., Herrick R.L., Buckholz J.M., Daniels A.R., Biro F.M., Pinney S.M. Comprehension and perceptions of study participants upon receiving perfluoroalkyl substance exposure biomarker results. Int. J. Hyg. Environ. Health. 2018;221:1040–1046. doi: 10.1016/j.ijheh.2018.07.005. PubMed DOI PMC
Exley K., Cano N., Aerts D., Biot P., Casteleyn L., Kolossa-Gehring M., Schwedler G., Castaño A., Angerer J., Koch H.M., et al. Communication in a Human biomonitoring study: Focus group work, public engagement and lessons learnt in 17 European countries. Environ. Res. 2015;141:31–41. doi: 10.1016/j.envres.2014.12.003. PubMed DOI
Knoppers B.M. From the Right to Know to the Right Not to Know. J. Law Med. Ethics. 2014;42:6–10. doi: 10.1111/jlme.12113. PubMed DOI
Ragas A.M.J., Huijbregts M.A.J., van Kaathoven E.H., Wolsink J.H., Wemmenhove J. Development and Implementation of a Right-to-Know Web Site That Presents Estimated Cancer Risks for Air Emissions of Large Industrial Facilities. Integr. Environ. Assess. Manag. 2006;2:365–374. doi: 10.1002/ieam.5630020408. PubMed DOI
UNECE . United Nations Economic Commission for Europe Aarhus Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters. UNECE; Geneva, Switzerland: 1998. p. 25.
Castell N., Dauge F.R., Schneider P., Vogt M., Lerner U., Fishbain B., Broday D., Bartonova A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017;99:293–302. doi: 10.1016/j.envint.2016.12.007. PubMed DOI
Lewis A., Edwards P. Validate personal air-pollution sensors. Nature. 2016;535:29–31. doi: 10.1038/535029a. PubMed DOI
Brody J.G., Morello-Frosch R., Brown P., Rudel R.A., Altman R.G., Frye M., Osimo C.A., Pérez C., Seryak L.M. Improving Disclosure and Consent: “Is It Safe?”: New Ethics for Reporting Personal Exposures to Environmental Chemicals. Am. J. Public Health. 2007;97:1547–1554. doi: 10.2105/AJPH.2006.094813. PubMed DOI PMC
Christine D.I., Thinyane M. Citizen science as a data-based practice: A consideration of data justice. Gene Expr. Patterns. 2021;2:100224. doi: 10.1016/j.patter.2021.100224. PubMed DOI PMC
McMakin A.H., Lundgren R.E. Risk Communication: A Handbook for Communicating Environmental, Safety, and Health Risks. John Wiley & Sons; Hoboken, NJ, USA: 2018.
Falk J.H., Storksdieck M., Dierking L.D. Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Underst. Sci. 2007;16:455–469. doi: 10.1177/0963662506064240. DOI
Robinson J.A., Kocman D., Speyer O., Gerasopoulos E. Meeting volunteer expectations—A review of volunteer motivations in citizen science and best practices for their retention through implementation of functional features in CS tools. J. Environ. Plan. Manag. 2021;64:2089–2113. doi: 10.1080/09640568.2020.1853507. DOI
Wolff K., Larsen S., Øgaard T. How to define and measure risk perceptions. Ann. Tour. Res. 2019;79:102759. doi: 10.1016/j.annals.2019.102759. DOI
Van Asselt M.B.A., Renn O. Risk governance. J. Risk Res. 2011;14:431–449. doi: 10.1080/13669877.2011.553730. DOI
Albers M.J. Human–Information Interaction with Complex Information for Decision-Making. Informatics. 2015;2:4–19. doi: 10.3390/informatics2020004. DOI
Allen W.L. Visual brokerage: Communicating data and research through visualisation. Public Underst. Sci. 2018;27:906–922. doi: 10.1177/0963662518756853. PubMed DOI PMC
Hubbell B.J., Kaufman A., Rivers L., Schulte K., Hagler G., Clougherty J., Cascio W., Costa D. Understanding social and behavioral drivers and impacts of air quality sensor use. Sci. Total Environ. 2018;621:886–894. doi: 10.1016/j.scitotenv.2017.11.275. PubMed DOI PMC
Keune H., Hazel P.V.D., Bouder F. Unmasking Environmental Health Zorros: The Need for Involvement of Real Risk Communication Experts for Two-Way and Problem-Solving Communication Approaches. In: Pacyna J.M., Pacyna E.G., editors. Environmental Determinants of Human Health. Springer International Publishing; Cham, Switzerland: 2016. pp. 203–224. Molecular and Integrative Toxicology. DOI
ISO . ISO Ergonomics of Human-System Interaction—Part 210: Human-Centred Design Process for Interactive Systems. ISO; Brussels, Belgium: 2008.
Sanders E.B.-N., Stappers P.J. Co-creation and the new landscapes of design. CoDesign. 2008;4:5–18. doi: 10.1080/15710880701875068. DOI
Kain D.J., de Jong M., Smith C.F. Usability of Complex Information Systems. CRC Press; Boca Raton, FL, USA: 2010. Information Usability Testing as Audience and Context Analysis for Risk Communication.
Crall A.W., Jordan R., Holfelder K., Newman G.J., Graham J., Waller D.M. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. Bristol Engl. 2013;22:745–764. doi: 10.1177/0963662511434894. PubMed DOI
Hoover A.G. Defining Environmental Health Literacy. In: Finn S., O’Fallon L.R., editors. Environmental Health Literacy. Springer International Publishing; Cham, Switzerland: 2019. pp. 3–18.
Nguyen M.H., Bol N., Lustria M.L.A. Perceived Active Control over Online Health Information: Underlying Mechanisms of Mode Tailoring Effects on Website Attitude and Information Recall. J. Health Commun. 2020;25:271–282. doi: 10.1080/10810730.2020.1743797. PubMed DOI
Rimer B.K., Kreuter M.W. Advancing Tailored Health Communication: A Persuasion and Message Effects Perspective. J. Commun. 2006;56:S184–S201. doi: 10.1111/j.1460-2466.2006.00289.x. DOI
Bonney R., Phillips T.B., Ballard H.L., Enck J.W. Can citizen science enhance public understanding of science? Public Underst. Sci. 2016;25:2–16. doi: 10.1177/0963662515607406. PubMed DOI
Madrigal D., Claustro M., Wong M., Bejarano E., Olmedo L., English P. Developing Youth Environmental Health Literacy and Civic Leadership through Community Air Monitoring in Imperial County, California. Int. J. Environ. Res. Public Health. 2020;17:1537. doi: 10.3390/ijerph17051537. PubMed DOI PMC
Nolan J.E.S., Coker E.S., Ward B.R., Williamson Y.A., Harley K.G. “Freedom to Breathe”: Youth Participatory Action Research (YPAR) to Investigate Air Pollution Inequities in Richmond, CA. Int. J. Environ. Res. Public Health. 2021;18:554. doi: 10.3390/ijerph18020554. PubMed DOI PMC
Peter M., Diekötter T., Kremer K., Höffler T. Citizen science project characteristics: Connection to participants’ gains in knowledge and skills. PLoS ONE. 2021;16:e0253692. doi: 10.1371/journal.pone.0253692. PubMed DOI PMC
Chapizanis D., Karakitsios S., Gotti A., Sarigiannis D.A. Assessing personal exposure using Agent Based Modelling informed by sensors technology. Environ. Res. 2021;192:110141. doi: 10.1016/j.envres.2020.110141. PubMed DOI
Ferro A.R., Kopperud R.J., Hildemann L.M. Elevated personal exposure to particulate matter from human activities in a residence. J. Expo. Sci. Environ. Epidemiol. 2004;14:S34–S40. doi: 10.1038/sj.jea.7500356. PubMed DOI
Lerner U., Yacobi T., Levy I., Moltchanov S.A., Cole-Hunter T., Fishbain B. The effect of ego-motion on environmental monitoring. Sci. Total Environ. 2015;533:8–16. doi: 10.1016/j.scitotenv.2015.06.066. PubMed DOI
Kocman D., Kanduč T., Novak R., Robinson J.A., Mikeš O., Degrendele C., Sáňka O., Vinkler J., Prokeš R., Vienneau D., et al. Multi-Sensor Data Collection for Personal Exposure Monitoring: ICARUS Experience. Fresenius Environ. Bull. 2021:1–6. (accepted for publication)
Robinson J.A., Novak R., Kanduč T., Sarigiannis D., Kocman D. Articulating User Experience of a Multi-Sensor Personal Air Quality Exposure Study. Department of Environmental Sciences, Jožef Stefan Institute; Ljubljana, Slovenia: 2021. in press.
Soleri D., Long J., Ramirez-Andreotta M., Eitemiller R., Pandya R. Finding Pathways to More Equitable and Meaningful Public-Scientist Partnerships. Citiz. Sci. Theory Pr. 2016;1:9. doi: 10.5334/cstp.46. DOI
Novak R., Petridis I., Kocman D., Robinson J.A., Kanduč T., Chapizanis D., Karakitsios S., Flückiger B., Vienneau D., Mikeš O., et al. Harmonization and Visualization of Data from a Transnational Multi-Sensor Personal Exposure Campaign. Int. J. Environ. Res. Public Health. 2021;18:11614. doi: 10.3390/ijerph182111614. PubMed DOI PMC
Nielsen Norman Group Design Thinking 101. [(accessed on 2 August 2021)]. Available online: https://www.nngroup.com/articles/design-thinking/
Golumbic Y.N., Fishbain B., Baram-Tsabari A. User centered design of a citizen science air-quality monitoring project. Int. J. Sci. Educ. Part B. 2019;9:195–213. doi: 10.1080/21548455.2019.1597314. DOI
Taylor R.S. Question-Negotiation and Information Seeking in Libraries. Coll. Res. Libr. 1968;29:178–194. doi: 10.5860/crl_29_03_178. DOI
Schneider P., Bartonova A., Castell N., Dauge F.R., Gerboles M., Hagler G.S.W., Hüglin C., Jones R.L., Khan S., Lewis A.C., et al. Toward a Unified Terminology of Processing Levels for Low-Cost Air-Quality Sensors. Environ. Sci. Technol. 2019;53:8485–8487. doi: 10.1021/acs.est.9b03950. PubMed DOI PMC
Kamišalić A., Fister I., Turkanović M., Karakatič S. Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review. Sensors. 2018;18:1714. doi: 10.3390/s18061714. PubMed DOI PMC
Baram-Tsabari A., Wolfson O., Yosef R., Chapnik N., Brill A., Segev E. Jargon use in Public Understanding of Science papers over three decades. Public Underst. Sci. 2020;29:644–654. doi: 10.1177/0963662520940501. PubMed DOI
Kirk A. Data Visualisation: A Handbook for Data Driven Design. SAGE; Thousand Oaks, CA, USA: 2016.
Wong-Parodi G., Dias M.B., Taylor M. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews. JMIR mHealth uHealth. 2018;6:e48. doi: 10.2196/mhealth.8273. PubMed DOI PMC
Robinson J.A., Kocman D., Horvat M., Bartonova A. End-User Feedback on a Low-Cost Portable Air Quality Sensor System-Are We There Yet? Sensors. 2018;18:3768. doi: 10.3390/s18113768. PubMed DOI PMC
Zappi P., Bales E., Park J.H., Griswold W., Šimuni T. The CitiSense Air Quality Monitoring Mobile Sensor Node; Proceedings of the IPSN 2012 Conference on Information Processing in Sensor Networks; Beijing, China. 16–19 April 2012.
European Commission EUR-Lex. [(accessed on 9 September 2021)]. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj.
Curto A., Donaire-Gonzalez D., Barrera-Gómez J., Marshall J.D., Nieuwenhuijsen M.J., Wellenius G.A., Tonne C. Performance of low-cost monitors to assess household air pollution. Environ. Res. 2018;163:53–63. doi: 10.1016/j.envres.2018.01.024. PubMed DOI
Gustafson A., Rice R.E. A review of the effects of uncertainty in public science communication. Public Underst. Sci. 2020;29:614–633. doi: 10.1177/0963662520942122. PubMed DOI
Krueger R.A., Casey M.A. Social Development Papers: Social Analysis Selected Tools and Techniques. Social Development Department The World Bank; Washington, DC, USA: 2001. Designing and Conducting Focus Group Interviews; pp. 4–24.
Virzi R.A. Refining the Test Phase of Usability Evaluation: How Many Subjects Is Enough? Hum. Factors. 1992;34:457–468. doi: 10.1177/001872089203400407. DOI
Novak R., Kocman D., Robinson J.A., Kanduč T., Sarigiannis D., Horvat M. Comparing Airborne Particulate Matter Intake Dose Assessment Models Using Low-Cost Portable Sensor Data. Sensors. 2020;20:1406. doi: 10.3390/s20051406. PubMed DOI PMC
Hirvonen N., Enwald H., Bath P.A., Pyky R., Korpelainen R., Huotari M.-L. Individual Factors Affecting Preferences for Feedback Message Tactics in the Contexts of Physical Activity. J. Health Commun. 2015;20:220–229. doi: 10.1080/10810730.2014.925015. PubMed DOI
Yuan S., Besley J.C., Dudo A. A comparison between scientists’ and communication scholars’ views about scientists’ public engagement activities. Public Underst. Sci. 2019;28:101–118. doi: 10.1177/0963662518797002. PubMed DOI
Silk K.J., Totzkay D. Communication Research in the Environmental Health Sciences. In: Finn S., O’Fallon L.R., editors. Environmental Health Literacy. Springer International Publishing; Cham, Switzerland: 2019. pp. 45–64.
Eppler M.J. Communication and Technology. De Gruyter Mouton; Berlin, Germany: 2015. 11. Information Quality and Information Overload: The Promises and Perils of the Information Age; pp. 215–232.
Druschke C.G., Seltzer C.E. Failures of Engagement: Lessons Learned from a Citizen Science Pilot Study. Appl. Environ. Educ. Commun. 2012;11:178–188. doi: 10.1080/1533015X.2012.777224. DOI
Novak R., Kocman D., Robinson J.A., Kanduč T., Sarigiannis D., Džeroski S., Horvat M. Complex Activity Recognition Using Classification Methods on Low-Cost Portable Ambient and Activity Sensor Data; Proceedings of the 13th Students’ Conference of the Jožef Stefan International Postgraduate School and 15th CMBE Day book of Abstracts: Throughout Knowledge Towards a Green New World; Online. 27 May 2021; Ljubljana, Slovenia: Jožef Stefan Institute and Jožef Stefan International Postgraduate School; 2021. p. 22.
World Health Organization WHO . Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary. World Health Organization; Geneva, Switzerland: 2021. PubMed
Burns T.W., O’Connor D.J., Stocklmayer S.M. Science Communication: A Contemporary Definition. Public Underst. Sci. 2003;12:183–202. doi: 10.1177/09636625030122004. DOI
Ramondt S., Ramírez A.S. Media Reporting on Air Pollution: Health Risk and Precautionary Measures in National and Regional Newspapers. Int. J. Environ. Res. Public Health. 2020;17:6516. doi: 10.3390/ijerph17186516. PubMed DOI PMC
Harmonization and Visualization of Data from a Transnational Multi-Sensor Personal Exposure Campaign