• This record comes from PubMed

Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review

. 2021 Dec 13 ; 9 (12) : e27363. [epub] 20211213

Status PubMed-not-MEDLINE Language English Country Canada Media electronic

Document type Journal Article, Review

Grant support
MR/S031820/1 Medical Research Council - United Kingdom

Links

PubMed 34898463
PubMed Central PMC8713097
DOI 10.2196/27363
PII: v9i12e27363
Knihovny.cz E-resources

BACKGROUND: Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures, such as corneal imaging, aberrometry, or biomechanical measurements. OBJECTIVE: The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical keratoconus and equivalent definitions. METHODS: For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations. RESULTS: We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported in this study. CONCLUSIONS: Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early treatment to prevent disease progression.

See more in PubMed

Mas Tur V, MacGregor C, Jayaswal R, O'Brart D, Maycock N. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62(6):770–83. doi: 10.1016/j.survophthal.2017.06.009.S0039-6257(17)30046-2 PubMed DOI

Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye (Lond) 2014 Feb;28(2):189–95. doi: 10.1038/eye.2013.278. eye2013278 PubMed DOI PMC

Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017 Mar;175:169–72. doi: 10.1016/j.ajo.2016.12.015.S0002-9394(16)30613-4 PubMed DOI

Chan E, Chong EW, Lingham G, Stevenson LJ, Sanfilippo PG, Hewitt AW, Mackey DA, Yazar S. Prevalence of keratoconus based on Scheimpflug imaging: the Raine study. Ophthalmology. 2021 Apr;128(4):515–21. doi: 10.1016/j.ophtha.2020.08.020.S0161-6420(20)30838-1 PubMed DOI

Papaliʼi-Curtin AT, Cox R, Ma T, Woods L, Covello A, Hall RC. Keratoconus prevalence among high school students in New Zealand. Cornea. 2019 Nov;38(11):1382–9. doi: 10.1097/ICO.0000000000002054. PubMed DOI

Ferdi AC, Nguyen V, Gore DM, Allan BD, Rozema JJ, Watson SL. Keratoconus natural progression: a systematic review and meta-analysis of 11 529 eyes. Ophthalmology. 2019 Jul;126(7):935–45. doi: 10.1016/j.ophtha.2019.02.029.S0161-6420(18)33287-1 PubMed DOI

Tuft SJ, Moodaley LC, Gregory WM, Davison CR, Buckley RJ. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994 Mar;101(3):439–47. doi: 10.1016/s0161-6420(94)31313-3.S0161-6420(94)31313-3 PubMed DOI

Pearson AR, Soneji B, Sarvananthan N, Sandford-Smith JH. Does ethnic origin influence the incidence or severity of keratoconus? Eye (Lond) 2000 Aug;14 ( Pt 4):625–8. doi: 10.1038/eye.2000.154. PubMed DOI

Downie LE, Lindsay RG. Contact lens management of keratoconus. Clin Exp Optom. 2015 Jul;98(4):299–311. doi: 10.1111/cxo.12300. doi: 10.1111/cxo.12300. PubMed DOI

Steinberg J, Bußmann N, Frings A, Katz T, Druchkiv V, Linke SJ. Quality of life in stable and progressive 'early-stage' keratoconus patients. Acta Ophthalmol. 2021 Mar;99(2):e196–201. doi: 10.1111/aos.14564. PubMed DOI

Saunier V, Mercier A, Gaboriau T, Malet F, Colin J, Fournié P, Malecaze F, Touboul D. Vision-related quality of life and dependency in French keratoconus patients: impact study. J Cataract Refract Surg. 2017 Dec;43(12):1582–90. doi: 10.1016/j.jcrs.2017.08.024.S0886-3350(17)30760-5 PubMed DOI

Gore DM, Watson MP, Tuft SJ. Permanent visual loss in eyes with keratoconus. Acta Ophthalmol. 2014 May;92(3):e244–5. doi: 10.1111/aos.12253. doi: 10.1111/aos.12253. PubMed DOI

Kelly T, Williams KA, Coster DJ, Australian Corneal Graft Registry Corneal transplantation for keratoconus: a registry study. Arch Ophthalmol. 2011 Jun;129(6):691–7. doi: 10.1001/archophthalmol.2011.7.archophthalmol.2011.7 PubMed DOI

Cao K, Verspoor K, Sahebjada S, Baird PN. Evaluating the performance of various machine learning algorithms to detect subclinical keratoconus. Trans Vis Sci Tech. 2020 Apr 24;9(2):24. doi: 10.1167/tvst.9.2.24. PubMed DOI PMC

Wittig-Silva C, Chan E, Islam FM, Wu T, Whiting M, Snibson GR. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014 Apr;121(4):812–21. doi: 10.1016/j.ophtha.2013.10.028.S0161-6420(13)01004-X PubMed DOI

Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010 Apr;149(4):585–93. doi: 10.1016/j.ajo.2009.10.021.S0002-9394(09)00808-3 PubMed DOI

O'Brart DP, Chan E, Samaras K, Patel P, Shah SP. A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol. 2011 Nov;95(11):1519–24. doi: 10.1136/bjo.2010.196493.bjo.2010.196493 PubMed DOI

Gore DM, Shortt AJ, Allan BD. New clinical pathways for keratoconus. Eye (Lond) 2013 Mar;27(3):329–39. doi: 10.1038/eye.2012.257. eye2012257 PubMed DOI PMC

Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009 Aug;35(8):1358–62. doi: 10.1016/j.jcrs.2009.03.035.S0886-3350(09)00481-7 PubMed DOI

Gore DM, Leucci MT, Koay S, Kopsachilis N, Nicolae MN, Malandrakis MI, Anand V, Allan BD. Accelerated pulsed high-fluence corneal cross-linking for progressive keratoconus. Am J Ophthalmol. 2021 Jan;221:9–16. doi: 10.1016/j.ajo.2020.08.021.S0002-9394(20)30447-5 PubMed DOI

Salmon HA, Chalk D, Stein K, Frost NA. Cost effectiveness of collagen crosslinking for progressive keratoconus in the UK NHS. Eye (Lond) 2015 Nov;29(11):1504–11. doi: 10.1038/eye.2015.151. eye2015151 PubMed DOI PMC

Lindstrom RL, Berdahl JP, Donnenfeld ED, Thompson V, Kratochvil D, Wong C, Falvey H, Lytle G, Botteman MF, Carter JA. Corneal cross-linking versus conventional management for keratoconus: a lifetime economic model. J Med Econ. 2021;24(1):410–20. doi: 10.1080/13696998.2020.1851556. PubMed DOI

Godefrooij DA, Mangen MJ, Chan E, O'Brart DP, Imhof SM, de Wit GA, Wisse RP. Cost-effectiveness analysis of corneal collagen crosslinking for progressive keratoconus. Ophthalmology. 2017 Oct;124(10):1485–95. doi: 10.1016/j.ophtha.2017.04.011.S0161-6420(16)32228-X PubMed DOI

Kreps EO, Claerhout I, Koppen C. Diagnostic patterns in keratoconus. Cont Lens Anterior Eye. 2021 Jun;44(3):101333. doi: 10.1016/j.clae.2020.05.002.S1367-0484(20)30103-X PubMed DOI

Lee A, Taylor P, Kalpathy-Cramer J, Tufail A. Machine learning has arrived! Ophthalmology. 2017 Dec;124(12):1726–8. doi: 10.1016/j.ophtha.2017.08.046.S0161-6420(17)31563-4 PubMed DOI

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. USA: Springer; 2009.

Russell S, Norvig P. Artificial Intelligence: A Modern Approach. USA: Prentice Hall; 2020.

Tong Y, Lu W, Yu Y, Shen Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis (Lond) 2020;7:22. doi: 10.1186/s40662-020-00183-6. 183 PubMed DOI PMC

Lin SR, Ladas JG, Bahadur GG, Al-Hashimi S, Pineda R. A review of machine learning techniques for keratoconus detection and refractive surgery screening. Semin Ophthalmol. 2019;34(4):317–26. doi: 10.1080/08820538.2019.1620812. PubMed DOI

Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics) USA: Springer-Verlag; 2007.

Goodfellow I, Bengio Y, Courville A. Deep Learning (Adaptive Computation and Machine Learning Series) USA: MIT Press; 2017. p. 800.

Ting DS, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GS, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019 Feb;103(2):167–75. doi: 10.1136/bjophthalmol-2018-313173. bjophthalmol-2018-313173 PubMed DOI PMC

Korot E, Guan Z, Ferraz D, Wagner SK, Zhang G, Liu X, Faes L, Pontikos N, Finlayson SG, Khalid H, Moraes G, Balaskas K, Denniston AK, Keane PA. Code-free deep learning for multi-modality medical image classification. Nat Mach Intell. 2021 Mar 01;3(4):288–98. doi: 10.1038/s42256-021-00305-2. DOI

Wang Y, Zhao Y, Therneau TM, Atkinson EJ, Tafti AP, Zhang N, Amin S, Limper AH, Khosla S, Liu H. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. J Biomed Inform. 2020 Feb;102:103364. doi: 10.1016/j.jbi.2019.103364. S1532-0464(19)30284-9 PubMed DOI PMC

Pontikos N. Normalisation and Clustering Methods Applied to Association Studies in Type 1 Diabetes. UK: Cambridge University; 2015.

- Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991 May;98(5 Suppl):786–806.S0161-6420(13)38012-9 PubMed

Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL, Malecaze F, Nishida K, Sangwan VS, Group of Panelists for the Global Delphi Panel of KeratoconusEctatic Diseases Global consensus on keratoconus and ectatic diseases. Cornea. 2015 Apr;34(4):359–69. doi: 10.1097/ICO.0000000000000408.00003226-201504000-00001 PubMed DOI

Amsler M. Kératocône classique et kératocône fruste; arguments unitaires. Ophthalmologica. 1946;111(2-3):96–101. doi: 10.1159/000300309. PubMed DOI

Belin MW, Duncan JK. Keratoconus: the ABCD grading system. Klin Monbl Augenheilkd. 2016 Jun;233(6):701–7. doi: 10.1055/s-0042-100626. PubMed DOI

Independent population validation of the belinambrosio enhanced ectasia display implications for keratoconus studies and screening. Enhanced Screening for Ectasia Detection based on Scheimpflug Tomography and Biomachanical evaluations. 2014. [2021-11-22]. https://tinyurl.com/5yywh3fm .

Hashemi H, Beiranvand A, Yekta A, Maleki A, Yazdani N, Khabazkhoob M. Pentacam top indices for diagnosing subclinical and definite keratoconus. J Curr Ophthalmol. 2016 Mar;28(1):21–6. doi: 10.1016/j.joco.2016.01.009. S2452-2325(15)30016-0 PubMed DOI PMC

Pentacam®. OCULUS. [2021-11-22]. https://www.pentacam.com/int/opticianoptometrist-without-pentacamr/models/pentacamr/core-functions.html .

Ocular Response Analyzer® G3. Reichert Technologies. [2021-11-22]. https://www.reichert.com/products/ocular-response-analyzer-g3 .

Henriquez MA, Hadid M, Izquierdo L. A systematic review of subclinical keratoconus and forme fruste keratoconus. J Refract Surg. 2020 Apr 01;36(4):270–9. doi: 10.3928/1081597X-20200212-03. PubMed DOI

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC

Krumeich JH, Daniel J, Knülle A. Live-epikeratophakia for keratoconus. J Cataract Refract Surg. 1998 Apr;24(4):456–63. doi: 10.1016/s0886-3350(98)80284-8.S0886-3350(98)80284-8 PubMed DOI

Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology. 2012 Nov;119(11):2231–8. doi: 10.1016/j.ophtha.2012.06.005.S0161-6420(12)00513-1 PubMed DOI

Saad A, Gatinel D. Validation of a new scoring system for the detection of early forme of keratoconus. Int J Keratoconus Ectatic Corneal Dis. 2012 May;1(2):100–8. doi: 10.5005/JP-JOURNALS-10025-1019. DOI

Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, Krueger RR, Colin J. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013 Aug;156(2):237–46.e1. doi: 10.1016/j.ajo.2013.03.034.S0002-9394(13)00222-5 PubMed DOI

Ramos-López D, Martínez-Finkelshtein A, Castro-Luna GM, Burguera-Gimenez N, Vega-Estrada A, Piñero D, Alió JL. Screening subclinical keratoconus with placido-based corneal indices. Optom Vis Sci. 2013 Apr;90(4):335–43. doi: 10.1097/OPX.0b013e3182843f2a. PubMed DOI

Bühren J, Schäffeler T, Kohnen T. Validation of metrics for the detection of subclinical keratoconus in a new patient collective. J Cataract Refract Surg. 2014 Feb;40(2):259–68. doi: 10.1016/j.jcrs.2013.07.044.S0886-3350(13)01387-4 PubMed DOI

Chan C, Ang M, Saad A, Chua D, Mejia M, Lim L, Gatinel D. Validation of an objective scoring system for forme fruste keratoconus detection and post-lasik ectasia risk assessment in asian eyes. Cornea. 2015 Sep;34(9):996–1004. doi: 10.1097/ICO.0000000000000529. PubMed DOI

Kovács I, Miháltz K, Kránitz K, Juhász É, Takács Á, Dienes L, Gergely R, Nagy ZZ. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg. 2016 Feb;42(2):275–83. doi: 10.1016/j.jcrs.2015.09.020.S0886-3350(15)01368-1 PubMed DOI

Saad A, Gatinel D. Combining placido and corneal wavefront data for the detection of forme fruste keratoconus. J Refract Surg. 2016 Aug 01;32(8):510–6. doi: 10.3928/1081597X-20160523-01. PubMed DOI

Ruiz Hidalgo I, Rodriguez P, Rozema JJ, Ní Dhubhghaill S, Zakaria N, Tassignon M, Koppen C. Evaluation of a machine-learning classifier for keratoconus detection based on scheimpflug tomography. Cornea. 2016 Jun;35(6):827–32. doi: 10.1097/ICO.0000000000000834. PubMed DOI

Ruiz Hidalgo I, Rozema JJ, Saad A, Gatinel D, Rodriguez P, Zakaria N, Koppen C. Validation of an objective keratoconus detection system implemented in a scheimpflug tomographer and comparison with other methods. Cornea. 2017 Jun;36(6):689–95. doi: 10.1097/ICO.0000000000001194. PubMed DOI

Xu Z, Li W, Jiang J, Zhuang X, Chen W, Peng M, Wang J, Lu F, Shen M, Wang Y. Characteristic of entire corneal topography and tomography for the detection of sub-clinical keratoconus with Zernike polynomials using Pentacam. Sci Rep. 2017 Nov 28;7(1):16486. doi: 10.1038/s41598-017-16568-y. doi: 10.1038/s41598-017-16568-y.10.1038/s41598-017-16568-y PubMed DOI PMC

Ambrósio R, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017 Jul 01;33(7):434–43. doi: 10.3928/1081597X-20170426-02. PubMed DOI

Sideroudi H, Labiris G, Georgantzoglou K, Ntonti P, Siganos C, Kozobolis V. Fourier analysis algorithm for the posterior corneal keratometric data: clinical usefulness in keratoconus. Ophthalmic Physiol Opt. 2017 Jul;37(4):460–6. doi: 10.1111/opo.12386. PubMed DOI

Francis M, Pahuja N, Shroff R, Gowda R, Matalia H, Shetty R, Remington Nelson EJ, Sinha Roy A. Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. J Cataract Refract Surg. 2017 Oct;43(10):1271–80. doi: 10.1016/j.jcrs.2017.10.012.S0886-3350(17)30642-9 PubMed DOI

Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, Arai Y, Asbell P. Keratoconus severity identification using unsupervised machine learning. PLoS One. 2018 Nov 6;13(11):e0205998. doi: 10.1371/journal.pone.0205998. PONE-D-18-15784 PubMed DOI PMC

Lopes BT, Ramos IC, Salomão MQ, Guerra FP, Schallhorn SC, Schallhorn JM, Vinciguerra R, Vinciguerra P, Price FW, Price MO, Reinstein DZ, Archer TJ, Belin MW, Machado AP, Ambrósio R. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol. 2018 Nov;195:223–32. doi: 10.1016/j.ajo.2018.08.005.S0002-9394(18)30445-8 PubMed DOI

Steinberg J, Siebert M, Katz T, Frings A, Mehlan J, Druchkiv V, Bühren J, Linke SJ. Tomographic and biomechanical scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg. 2018 Dec 01;34(12):840–7. doi: 10.3928/1081597X-20181012-01. PubMed DOI

Issarti I, Consejo A, Jiménez-García M, Hershko S, Koppen C, Rozema JJ. Computer aided diagnosis for suspect keratoconus detection. Comput Biol Med. 2019 Jun;109:33–42. doi: 10.1016/j.compbiomed.2019.04.024.S0010-4825(19)30132-5 PubMed DOI

Chandapura R, Salomão MQ, Ambrósio R, Swarup R, Shetty R, Sinha Roy A. Bowman's topography for improved detection of early ectasia. J Biophotonics. 2019 Oct;12(10):e201900126. doi: 10.1002/jbio.201900126. PubMed DOI

Xie Y, Zhao L, Yang X, Wu X, Yang Y, Huang X, Liu F, Xu J, Lin L, Lin H, Feng Q, Lin H, Liu Q. Screening candidates for refractive surgery with corneal tomographic-based deep learning. JAMA Ophthalmol. 2020 May 01;138(5):519–26. doi: 10.1001/jamaophthalmol.2020.0507. 2763363 PubMed DOI PMC

Kuo B, Chang W, Liao T, Liu F, Liu H, Chu H, Chen W, Hu F, Yen J, Wang I. Keratoconus screening based on deep learning approach of corneal topography. Transl Vis Sci Technol. 2020 Sep 25;9(2):53. doi: 10.1167/tvst.9.2.53. TVST-20-2403 PubMed DOI PMC

Shi C, Wang M, Zhu T, Zhang Y, Ye Y, Jiang J, Chen S, Lu F, Shen M. Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities. Eye Vis (Lond) 2020 Sep 10;7:48. doi: 10.1186/s40662-020-00213-3. 213 PubMed DOI PMC

Toprak I, Cavas F, Velázquez JS, Alio Del Barrio JL, Alio JL. Subclinical keratoconus detection with three-dimensional (3-D) morphogeometric and volumetric analysis. Acta Ophthalmol. 2020 Dec;98(8):e933–42. doi: 10.1111/aos.14433. PubMed DOI

Issarti I, Consejo A, Jiménez-García M, Kreps EO, Koppen C, Rozema JJ. Logistic index for keratoconus detection and severity scoring (Logik) Comput Biol Med. 2020 Jul;122:103809. doi: 10.1016/j.compbiomed.2020.103809.S0010-4825(20)30176-1 PubMed DOI

Lavric A, Popa V, Takahashi H, Yousefi S. Detecting keratoconus from corneal imaging data using machine learning. IEEE Access. 2020 Aug 12;8:149113–21. doi: 10.1109/access.2020.3016060. DOI

Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50. doi: 10.4103/0301-4738.37595. PubMed DOI PMC

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, QUADAS-2 Group QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011 Oct 18;155(8):529–36. doi: 10.7326/0003-4819-155-8-201110180-00009. 155/8/529 PubMed DOI

Lawless MA, Hodge C. Wavefront's role in corneal refractive surgery. Clin Exp Ophthalmol. 2005 Apr;33(2):199–209. doi: 10.1111/j.1442-9071.2005.00994.x.CEO994 PubMed DOI

Toprak I, Vega A, Alió Del Barrio JL, Espla E, Cavas F, Alió JL. Diagnostic value of corneal epithelial and stromal thickness distribution profiles in forme fruste keratoconus and subclinical keratoconus. Cornea. 2021 Jan;40(1):61–72. doi: 10.1097/ICO.0000000000002435.00003226-202101000-00011 PubMed DOI

Belin MW, Khachikian SS. Keratoconus / ectasia detection with the oculus pentacam: belin / ambrósio enhanced ectasia display. Highlights Ophthalmol. 2008;35(6):5–12. doi: 10.5005/jp/books/11830_8. DOI

Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5546–55. doi: 10.1167/iovs.10-5369.iovs.10-5369 PubMed DOI

Rozema JJ, Rodriguez P, Ruiz Hidalgo I, Navarro R, Tassignon M, Koppen C. SyntEyes KTC: higher order statistical eye model for developing keratoconus. Ophthalmic Physiol Opt. 2017 May;37(3):358–65. doi: 10.1111/opo.12369. PubMed DOI

Hashemi H, Beiranvand A, Yekta A, Asharlous A, Khabazkhoob M. Biomechanical properties of early keratoconus: suppressed deformation signal wave. Cont Lens Anterior Eye. 2017 Apr;40(2):104–8. doi: 10.1016/j.clae.2016.12.004.S1367-0484(16)30198-9 PubMed DOI

Galletti JD, Ruiseñor Vázquez PR, Fuentes Bonthoux F, Pförtner T, Galletti JG. Multivariate analysis of the ocular response analyzer's corneal deformation response curve for early keratoconus detection. J Ophthalmol. 2015;2015:496382. doi: 10.1155/2015/496382. doi: 10.1155/2015/496382. PubMed DOI PMC

Barsam A, Petrushkin H, Brennan N, Bunce C, Xing W, Foot B, Tuft S. Acute corneal hydrops in keratoconus: a national prospective study of incidence and management. Eye (Lond) 2015 Apr;29(4):469–74. doi: 10.1038/eye.2014.333. eye2014333 PubMed DOI PMC

Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst. 2021 Jun 10;PP doi: 10.1109/TNNLS.2021.3084827. (forthcoming) PubMed DOI

Breiman L. Random forests. Mach Learn. 2001 Oct;45:5–32. doi: 10.1023/A:1010933404324. DOI

Bühren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3424–32. doi: 10.1167/iovs.09-4960.iovs.09-4960 PubMed DOI

Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018 Mar;2(3):158–64. doi: 10.1038/s41551-018-0195-0.10.1038/s41551-018-0195-0 PubMed DOI

Scruggs BA, Chan RV, Kalpathy-Cramer J, Chiang MF, Campbell JP. Artificial intelligence in retinopathy of prematurity diagnosis. Transl Vis Sci Technol. 2020 Feb 10;9(2):5. doi: 10.1167/tvst.9.2.5. TVST-19-2010 PubMed DOI PMC

Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, Askham H, Lukic M, Huemer J, Fasler K, Moraes G, Meyer C, Wilson M, Dixon J, Hughes C, Rees G, Khaw PT, Karthikesalingam A, King D, Hassabis D, Suleyman M, Back T, Ledsam JR, Keane PA, De Fauw J. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020 Jun;26(6):892–9. doi: 10.1038/s41591-020-0867-7.10.1038/s41591-020-0867-7 PubMed DOI

Chowdhury K, Dore C, Burr JM, Bunce C, Raynor M, Edwards M, Larkin DF. A randomised, controlled, observer-masked trial of corneal cross-linking for progressive keratoconus in children: the KERALINK protocol. BMJ Open. 2019 Sep 12;9(9):e028761. doi: 10.1136/bmjopen-2018-028761. bmjopen-2018-028761 PubMed DOI PMC

Larkin DF, Chowdhury K, Burr JM, Raynor M, Edwards M, Tuft SJ, Bunce C, Caverly E, Doré C, KERALINK Trial Study Group Effect of corneal cross-linking versus standard care on keratoconus progression in young patients: the KERALINK randomized controlled trial. Ophthalmology. 2021 Nov;128(11):1516–26. doi: 10.1016/j.ophtha.2021.04.019. S0161-6420(21)00297-9 PubMed DOI

Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic test evaluation methodology: a systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard - An update. PLoS One. 2019 Oct;14(10):e0223832. doi: 10.1371/journal.pone.0223832. PONE-D-19-15721 PubMed DOI PMC

Flynn TH, Sharma DP, Bunce C, Wilkins MR. Differential precision of corneal Pentacam HR measurements in early and advanced keratoconus. Br J Ophthalmol. 2016 Sep;100(9):1183–7. doi: 10.1136/bjophthalmol-2015-307201.bjophthalmol-2015-307201 PubMed DOI

Yang K, Xu L, Fan Q, Zhao D, Ren S. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes. Sci Rep. 2019 Oct 25;9(1):15379. doi: 10.1038/s41598-019-51502-4. doi: 10.1038/s41598-019-51502-4.10.1038/s41598-019-51502-4 PubMed DOI PMC

Ahn SJ, Kim MK, Wee WR. Topographic progression of keratoconus in the Korean population. Korean J Ophthalmol. 2013 Jun;27(3):162–6. doi: 10.3341/kjo.2013.27.3.162. PubMed DOI PMC

Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis (Lond) 2016 Mar 11;3:6. doi: 10.1186/s40662-016-0038-6. 38 PubMed DOI PMC

Meyer JJ, Gokul A, Vellara HR, Prime Z, McGhee CN. Repeatability and Agreement of Orbscan II, Pentacam HR, and Galilei Tomography Systems in Corneas with keratoconus. Am J Ophthalmol. 2017 Mar;175:122–8. doi: 10.1016/j.ajo.2016.12.003.S0002-9394(16)30599-2 PubMed DOI

Guilbert E, Saad A, Elluard M, Grise-Dulac A, Rouger H, Gatinel D. Repeatability of keratometry measurements obtained with three topographers in keratoconic and normal corneas. J Refract Surg. 2016 Mar;32(3):187–92. doi: 10.3928/1081597X-20160113-01. PubMed DOI

Hashemi H, Yekta A, Khabazkhoob M. Effect of keratoconus grades on repeatability of keratometry readings: comparison of 5 devices. J Cataract Refract Surg. 2015 May;41(5):1065–72. doi: 10.1016/j.jcrs.2014.08.043.S0886-3350(15)00454-X PubMed DOI

Kanellopoulos AJ, Moustou V, Asimellis G. Evaluation of visual acuity, pachymetry and anterior-surface irregularity in keratoconus and crosslinking intervention follow-up in 737 cases. Int J Kerat Ect Cor Dis. 2013:95–103. doi: 10.5005/jp-journals-10025-1060. DOI

Kanellopoulos AJ, Asimellis G. Revisiting keratoconus diagnosis and progression classification based on evaluation of corneal asymmetry indices, derived from Scheimpflug imaging in keratoconic and suspect cases. Clin Ophthalmol. 2013;7:1539–48. doi: 10.2147/OPTH.S44741. doi: 10.2147/OPTH.S44741.opth-7-1539 PubMed DOI PMC

Piñero DP, Alio JL, Tomás J, Maldonado MJ, Teus MA, Barraquer RI. Vector analysis of evolutive corneal astigmatic changes in keratoconus. Invest Ophthalmol Vis Sci. 2011 Jun 08;52(7):4054–62. doi: 10.1167/iovs.10-6856.iovs.10-6856 PubMed DOI

Yousefi S, Kiwaki T, Zheng Y, Sugiura H, Asaoka R, Murata H, Lemij H, Yamanishi K. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol. 2018 Sep;193:71–9. doi: 10.1016/j.ajo.2018.06.007.S0002-9394(18)30271-X PubMed DOI

Belghith A, Bowd C, Medeiros FA, Balasubramanian M, Weinreb RN, Zangwill LM. Glaucoma progression detection using nonlocal Markov random field prior. J Med Imaging (Bellingham) 2014 Oct;1(3):034504. doi: 10.1117/1.JMI.1.3.034504. 14103PR PubMed DOI PMC

Hardcastle AJ, Liskova P, Bykhovskaya Y, McComish BJ, Davidson AE, Inglehearn CF, Li X, Choquet H, Habeeb M, Lucas SE, Sahebjada S, Pontikos N, Lopez KE, Khawaja AP, Ali M, Dudakova L, Skalicka P, Van Dooren BT, Geerards AJ, Haudum CW, Faro VL, Tenen A, Simcoe MJ, Patasova K, Yarrand D, Yin J, Siddiqui S, Rice A, Farraj LA, Chen YI, Rahi JS, Krauss RM, Theusch E, Charlesworth JC, Szczotka-Flynn L, Toomes C, Meester-Smoor MA, Richardson AJ, Mitchell PA, Taylor KD, Melles RB, Aldave AJ, Mills RA, Cao K, Chan E, Daniell MD, Wang JJ, Rotter JI, Hewitt AW, MacGregor S, Klaver CC, Ramdas WD, Craig JE, Iyengar SK, O'Brart D, Jorgenson E, Baird PN, Rabinowitz YS, Burdon KP, Hammond CJ, Tuft SJ, Hysi PG. A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology. 2021 Mar 01;4(1):266. doi: 10.1038/s42003-021-01784-0. doi: 10.1038/s42003-021-01784-0.10.1038/s42003-021-01784-0 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...