A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus

. 2021 Mar 01 ; 4 (1) : 266. [epub] 20210301

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, metaanalýza, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33649486

Grantová podpora
RC2 AG036607 NIA NIH HHS - United States
British Heart Foundation - United Kingdom
G1002002 Medical Research Council - United Kingdom
R01 EY027004 NEI NIH HHS - United States
HHSN268201200008C NHLBI NIH HHS - United States
MR/S031820/1 Medical Research Council - United Kingdom
R01 DK116738 NIDDK NIH HHS - United States
U19 HL069757 NHLBI NIH HHS - United States
R01 EY009052 NEI NIH HHS - United States
Wellcome Trust - United Kingdom
UL1 TR001881 NCATS NIH HHS - United States
HHSN268201200008I NHLBI NIH HHS - United States
203141/Z/16/Z Wellcome Trust - United Kingdom
Department of Health - United Kingdom
MR/T040912/1 Medical Research Council - United Kingdom
UL1 TR000124 NCATS NIH HHS - United States

Odkazy

PubMed 33649486
PubMed Central PMC7921564
DOI 10.1038/s42003-021-01784-0
PII: 10.1038/s42003-021-01784-0
Knihovny.cz E-zdroje

Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease.

Amphia Hospital Breda The Netherlands

Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne VIC Australia

Centre for Vision Research Department of Ophthalmology Westmead Institute for Medical Research University of Sydney Westmead NSW Australia

Department of Epidemiology Erasmus Medical Center GD Rotterdam The Netherlands

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Ophthalmology Academic Medical Center Amsterdam The Netherlands

Department of Ophthalmology Case Western Reserve University Cleveland OH USA

Department of Ophthalmology Erasmus Medical Center GD Rotterdam The Netherlands

Department of Ophthalmology Flinders University Adelaide SA Australia

Department of Ophthalmology St James's University Hospital Leeds UK

Department of Ophthalmology University Medical Center Groningen Groningen the Netherlands

Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Surgery and Board of Governors Regenerative Medicine Institute Cedars Sinai Medical Center Los Angeles CA USA

Department of Surgery Ophthalmology University of Melbourne Royal Victorian Eye and Ear Hospital East Melbourne VIC Australia

Department of Twin Research and Genetic Epidemiology King's College London London UK

Division of Endocrinology and Diabetology Endocrinology Lab Platform Department of Internal Medicine Medical University of Graz Graz Austria

Division of Molecular Medicine Leeds Institute of Medical Research University of Leeds Leeds UK

Division of Research Kaiser Permanente Northern California Oakland CA USA

Health Services and Systems Research Duke NUS Medical School Singapore Singapore

Institute for Translational Genomics and Population Sciences The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center; Department of Pediatrics Harbor UCLA Medical Center Torrance CA USA

Melbourne Stem Cell Centre Melbourne VIC 3800 Australia

Menzies Institute for Medical Research University of Tasmania Hobart TAS Australia

Moorfields Eye Hospital NHS Foundation Trust London UK

NIHR Biomedical Research Centre Moorfields Eye Hospital London UK

Oakland Research Institute Oakland CA USA

QIMR Berghofer Medical Research Institute Brisbane QLD Australia

School of Primary and Allied Health Care Monash University Melbourne VIC Australia

Section of Ophthalmology School of Life Course Sciences King's College London London UK

St Thomas Hospital Guy's and St Thomas NHS Trust London London UK

The Cornea Eye Institute Beverly Hills CA USA

The Jules Stein Institute University of California Los Angeles Los Angeles CA USA

The Rotterdam Eye Hospital Rotterdam The Netherlands

UCL Great Ormond Street Hospital Institute of Child Health London UK

UCL Institute of Ophthalmology London UK

Vision Eye Institute Melbourne VIC Australia

Zobrazit více v PubMed

Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am. J. Ophthalmol. 2017;175:169–172. doi: 10.1016/j.ajo.2016.12.015. PubMed DOI

Nielsen K, Hjortdal J, Aagaard Nohr E, Ehlers N. Incidence and prevalence of keratoconus in Denmark. Acta Ophthalmol. Scand. 2007;85:890–892. doi: 10.1111/j.1600-0420.2007.00981.x. PubMed DOI

Kymes SM, Walline JJ, Zadnik K, Gordon MO. Collaborative longitudinal evaluation of keratoconus study, g. Quality of life in keratoconus. Am. J. Ophthalmol. 2004;138:527–535. doi: 10.1016/j.ajo.2004.04.031. PubMed DOI

Bak-Nielsen, S., Ramlau-Hansen, C. H., Ivarsen, A., Plana-Ripoll, O. & Hjortdal, J. A nationwide population-based study of social demographic factors, associated diseases and mortality of keratoconus patients in Denmark from 1977 to 2015. Acta Ophthalmol. 97, 497–504 (2018). PubMed

Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv. Ophthalmol. 2017;62:770–783. doi: 10.1016/j.survophthal.2017.06.009. PubMed DOI

Gain P, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134:167–173. doi: 10.1001/jamaophthalmol.2015.4776. PubMed DOI

Matthaei M, et al. Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting. Transplantation. 2017;101:1387–1399. doi: 10.1097/TP.0000000000001281. PubMed DOI

Chan, E. et al. Prevalence of keratoconus based on Scheimpflug imaging: The Raine Study. Ophthalmology10.1016/j.ophtha.2020.08.020 (2020). PubMed

Hashemi H, Khabazkhoob M, Fotouhi A. Topographic keratoconus is not rare in an Iranian population: the Tehran Eye Study. Ophthalmic Epidemiol. 2013;20:385–391. doi: 10.3109/09286586.2013.848458. PubMed DOI

Papali’i-Curtin AT, et al. Keratoconus prevalence among high school students in New Zealand. Cornea. 2019;38:1382–1389. doi: 10.1097/ICO.0000000000002054. PubMed DOI

Tuft SJ, et al. Keratoconus in 18 pairs of twins. Acta Ophthalmol. 2012;90:e482–e486. doi: 10.1111/j.1755-3768.2012.02448.x. PubMed DOI

Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am. J. Med. Genet. 2000;93:403–409. doi: 10.1002/1096-8628(20000828)93:5<403::AID-AJMG11>3.0.CO;2-A. PubMed DOI

Woodward MA, Blachley TS, Stein JD. The association between sociodemographic factors, common systemic diseases, and keratoconus: an analysis of a Nationwide Heath Care Claims Database. Ophthalmology. 2016;123:457–65 e2. doi: 10.1016/j.ophtha.2015.10.035. PubMed DOI PMC

Bisceglia L, et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest. Ophthalmol. Vis. Sci. 2009;50:1081–1086. doi: 10.1167/iovs.08-2382. PubMed DOI

Burdon KP, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest Ophthalmol. Vis. Sci. 2011;52:8514–8519. doi: 10.1167/iovs.11-8261. PubMed DOI PMC

Iglesias AI, et al. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat. Commun. 2018;9:1864. doi: 10.1038/s41467-018-03646-6. PubMed DOI PMC

Lu Y, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat. Genet. 2013;45:155–163. doi: 10.1038/ng.2506. PubMed DOI PMC

Dyrlund, T. et al. Human cornea proteome: identification and quantitation of the proteins of the three main layers including epithelium, stroma and endothelium. Investigative Ophthalmol. Visual Sci.54 (2013). PubMed PMC

Tang YG, et al. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet. Med. 2005;7:397–405. doi: 10.1097/01.GIM.0000170772.41860.54. PubMed DOI

Choquet H, et al. A multiethnic genome-wide analysis of 44,039 individuals identifies 41 new loci associated with central corneal thickness. Commun. Biol. 2020;3:301. doi: 10.1038/s42003-020-1037-7. PubMed DOI PMC

Liskova P, Dudakova L, Krepelova A, Klema J, Hysi PG. Replication of SNP associations with keratoconus in a Czech cohort. PLoS ONE. 2017;12:e0172365. doi: 10.1371/journal.pone.0172365. PubMed DOI PMC

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004. doi: 10.1111/j.0006-341X.1999.00997.x. PubMed DOI

Li X, et al. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum. Mol. Genet. 2012;21:421–429. doi: 10.1093/hmg/ddr460. PubMed DOI PMC

McComish, B. J. et al. Association of Genetic Variation With Keratoconus. JAMA Ophthalmol.38, 174–181 (2019). PubMed PMC

Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291–295. doi: 10.1038/ng.3211. PubMed DOI PMC

Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003;55:1531–1546. doi: 10.1016/j.addr.2003.08.002. PubMed DOI

Young BB, Zhang G, Koch M, Birk DE. The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea. J. Cell Biochem. 2002;87:208–220. doi: 10.1002/jcb.10290. PubMed DOI

Feneck EM, Lewis PN, Ralphs J, Meek KM. A comparative study of the elastic fibre system within the mouse and human cornea. Exp. Eye Res. 2018;177:35–44. doi: 10.1016/j.exer.2018.07.024. PubMed DOI PMC

Sun M, et al. Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J. Cell Sci. 2011;124:4096–4105. doi: 10.1242/jcs.091363. PubMed DOI PMC

De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert JM. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am. J. Hum. Genet. 1997;60:547–554. PubMed PMC

Klaassens M, et al. Ehlers-Danlos arthrochalasia type (VIIA-B)-expanding the phenotype: from prenatal life through adulthood. Clin. Genet. 2012;82:121–130. doi: 10.1111/j.1399-0004.2011.01758.x. PubMed DOI PMC

Zou Y, et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 2014;23:2339–2352. doi: 10.1093/hmg/ddt627. PubMed DOI PMC

Delbaere, S. et al. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet. Med.22, 112–123 (2019). PubMed

Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol. Life Sci. 2006;63:2304–2316. doi: 10.1007/s00018-006-6149-9. PubMed DOI PMC

Kern A, Eble J, Golbik R, Kuhn K. Interaction of type IV collagen with the isolated integrins alpha 1 beta 1 and alpha 2 beta 1. Eur. J. Biochem. 1993;215:151–159. doi: 10.1111/j.1432-1033.1993.tb18017.x. PubMed DOI

Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha(11)beta(1) and alpha(2)beta(1) J. Biol. Chem. 2002;277:37377–37381. doi: 10.1074/jbc.M206286200. PubMed DOI

Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas. Exp. Eye Res. 2011;92:282–298. doi: 10.1016/j.exer.2011.01.008. PubMed DOI

Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev. Biol. 2008;19:82–93. doi: 10.1016/j.semcdb.2007.09.015. PubMed DOI PMC

Pei Y, Reins RY, McDermott AM. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes. Exp. Eye Res. 2006;83:1063–1073. doi: 10.1016/j.exer.2006.05.011. PubMed DOI

Stagos D, Chen Y, Cantore M, Jester JV, Vasiliou V. Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res. Bull. 2010;81:211–218. doi: 10.1016/j.brainresbull.2009.08.017. PubMed DOI PMC

Townsend AJ, et al. Selective protection by stably transfected human ALDH3A1 (but not human ALDH1A1) against toxicity of aliphatic aldehydes in V79 cells. Chem. Biol. Interact. 2001;130-132:261–273. doi: 10.1016/S0009-2797(00)00270-2. PubMed DOI

Koppaka V, et al. ALDH3A1 plays a functional role in maintenance of corneal epithelial homeostasis. PLoS One. 2016;11:e0146433. doi: 10.1371/journal.pone.0146433. PubMed DOI PMC

Kenchegowda D, Harvey SA, Swamynathan S, Lathrop KL, Swamynathan SK. Critical role of Klf5 in regulating gene expression during post-eyelid opening maturation of mouse corneas. PLoS ONE. 2012;7:e44771. doi: 10.1371/journal.pone.0044771. PubMed DOI PMC

Diakiw SM, D’Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life. 2013;65:999–1011. doi: 10.1002/iub.1233. PubMed DOI

Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol. Life Sci. 2009;66:2691–2706. doi: 10.1007/s00018-009-0045-z. PubMed DOI PMC

Stephens DN, et al. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity. J. Biol. Chem. 2013;288:34304–34324. doi: 10.1074/jbc.M113.504399. PubMed DOI PMC

Swamynathan SK, et al. Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol. Cell Biol. 2007;27:182–194. doi: 10.1128/MCB.00846-06. PubMed DOI PMC

Joseph A, et al. Expression of CD34 and L-selectin on human corneal keratocytes. Invest Ophthalmol. Vis. Sci. 2003;44:4689–4692. doi: 10.1167/iovs.02-0999. PubMed DOI

Evans RA, Tian YC, Steadman R, Phillips AO. TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp. Cell Res. 2003;282:90–100. doi: 10.1016/S0014-4827(02)00015-0. PubMed DOI

Li B, et al. Knockdown of eIF3a ameliorates cardiac fibrosis by inhibiting the TGF-beta1/Smad3 signaling pathway. Cell Mol. Biol. (Noisy-le.-Gd.) 2016;62:97–101. PubMed

Dong Z, et al. Role of eIF3a in regulating cell cycle progression. Exp. Cell Res. 2009;315:1889–1894. doi: 10.1016/j.yexcr.2009.03.009. PubMed DOI PMC

De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol. Life Sci. 2018;75:1929–1946. doi: 10.1007/s00018-018-2766-3. PubMed DOI PMC

Saoncella S, et al. Nuclear Akt2 opposes limbal keratinocyte stem cell self-renewal by repressing a FOXO-mTORC1 signaling pathway. Stem Cells. 2014;32:754–769. doi: 10.1002/stem.1565. PubMed DOI

Noordermeer D, et al. The dynamic architecture of Hox gene clusters. Science. 2011;334:222–225. doi: 10.1126/science.1207194. PubMed DOI

Afshari NA, et al. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat. Commun. 2017;8:14898. doi: 10.1038/ncomms14898. PubMed DOI PMC

Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC

Carnes MU, Allingham RR, Ashley-Koch A, Hauser MA. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp. Eye Res. 2018;167:91–99. doi: 10.1016/j.exer.2016.11.021. PubMed DOI

Khaled ML, et al. Differential expression of coding and long noncoding RNAs in keratoconus-affected corneas. Invest Ophthalmol. Vis. Sci. 2018;59:2717–2728. doi: 10.1167/iovs.18-24267. PubMed DOI PMC

Finucane HK, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 2018;50:621–629. doi: 10.1038/s41588-018-0081-4. PubMed DOI PMC

Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016;48:481–487. doi: 10.1038/ng.3538. PubMed DOI

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI

Tiwari A, et al. KLF4 regulates corneal epithelial cell cycle progression by suppressing canonical TGF-beta signaling and upregulating CDK inhibitors P16 and P27. Invest Ophthalmol. Vis. Sci. 2019;60:731–740. doi: 10.1167/iovs.18-26423. PubMed DOI PMC

Galvis V, et al. Keratoconus: an inflammatory disorder? Eye (Lond.) 2015;29:843–859. doi: 10.1038/eye.2015.63. PubMed DOI PMC

Bohac M, et al. Incidence and clinical characteristics of post LASIK ectasia: a review of over 30,000 LASIK cases. Semin. Ophthalmol. 2018;33:869–877. doi: 10.1080/08820538.2018.1539183. PubMed DOI

Ferdi AC, et al. Keratoconus natural progression: a systematic review and meta-analysis of 11 529 Eyes. Ophthalmology. 2019;126:935–945. doi: 10.1016/j.ophtha.2019.02.029. PubMed DOI

Richardson AJ, Narendran N, Guymer RH, Vu H, Baird PN. Blood storage at 4 degrees C-factors involved in DNA yield and quality. J. Lab Clin. Med. 2006;147:290–294. doi: 10.1016/j.lab.2006.01.005. PubMed DOI

Sahebjada S, et al. Association of the hepatocyte growth factor gene with keratoconus in an Australian population. PLoS ONE. 2014;9:e84067. doi: 10.1371/journal.pone.0084067. PubMed DOI PMC

Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z. PubMed DOI PMC

Simon JA, et al. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the Cholesterol and Pharmacogenetics (CAP) Study. Am. J. Cardiol. 2006;97:843–850. doi: 10.1016/j.amjcard.2005.09.134. PubMed DOI

Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J. Refract. Surg. 1995;11:371–379. doi: 10.3928/1081-597X-19950901-14. PubMed DOI

Das S, et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC

McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI

Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32:1423–1426. doi: 10.1093/bioinformatics/btw079. PubMed DOI PMC

Burdon KP, et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum. Genet. 2008;124:379–386. doi: 10.1007/s00439-008-0555-z. PubMed DOI

Burdon KP, et al. Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains Eye Study. Am. J. Ophthalmol. 2015;159:31–36.e1. doi: 10.1016/j.ajo.2014.09.020. PubMed DOI PMC

Dimasi DP, et al. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am. J. Ophthalmol. 2012;154:833–842.e2. doi: 10.1016/j.ajo.2012.04.023. PubMed DOI

Fritsche LG, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016;48:134–143. doi: 10.1038/ng.3448. PubMed DOI PMC

Anderson CA, et al. Data quality control in genetic case-control association studies. Nat. Protoc. 2010;5:1564–1573. doi: 10.1038/nprot.2010.116. PubMed DOI PMC

Loh P-R, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016;48:1443–1448. PubMed PMC

Auton A, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Banda Y, et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics. 2015;200:1285–1295. doi: 10.1534/genetics.115.178616. PubMed DOI PMC

Kvale MN, et al. Genotyping informatics and quality control for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics. 2015;200:1051–1060. doi: 10.1534/genetics.115.178905. PubMed DOI PMC

Hoffmann TJ, et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics. 2011;98:79–89. doi: 10.1016/j.ygeno.2011.04.005. PubMed DOI PMC

Hoffmann TJ, et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics. 2011;98:422–430. doi: 10.1016/j.ygeno.2011.08.007. PubMed DOI PMC

Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2012;9:179–181. doi: 10.1038/nmeth.1785. PubMed DOI

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012;44:955–959. doi: 10.1038/ng.2354. PubMed DOI PMC

Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011;1:457–470. doi: 10.1534/g3.111.001198. PubMed DOI PMC

Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529. PubMed DOI PMC

Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 2010;11:499–511. doi: 10.1038/nrg2796. PubMed DOI

Huang L, Wang C, Rosenberg NA. The relationship between imputation error and statistical power in genetic association studies in diverse populations. Am. J. Hum. Genet. 2009;85:692–698. doi: 10.1016/j.ajhg.2009.09.017. PubMed DOI PMC

Ikram MA, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 2017;32:807–850. doi: 10.1007/s10654-017-0321-4. PubMed DOI PMC

Ramdas WD, et al. Common genetic variants associated with open-angle glaucoma. Hum. Mol. Genet. 2011;20:2464–2471. doi: 10.1093/hmg/ddr120. PubMed DOI

Hysi PG, et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 2020;52:401–407. doi: 10.1038/s41588-020-0599-0. PubMed DOI PMC

Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC

Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinform. 2010;11:288. doi: 10.1186/1471-2105-11-288. PubMed DOI PMC

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statistical Soci. Ser. B (Methodological)57, 289–300 (1995).

Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236–1241. doi: 10.1038/ng.3406. PubMed DOI PMC

Zhang Y, Qi G, Park JH, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 2018;50:1318–1326. doi: 10.1038/s41588-018-0193-x. PubMed DOI

Wood AR, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014;46:1173–1186. doi: 10.1038/ng.3097. PubMed DOI PMC

Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update) Nucleic Acids Res. 2012;40:W65–W70. doi: 10.1093/nar/gks364. PubMed DOI PMC

MacArthur J, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) Nucleic Acids Res. 2017;45:D896–D901. doi: 10.1093/nar/gkw1133. PubMed DOI PMC

Hao XD, Chen P, Chen ZL, Li SX, Wang Y. Evaluating the association between keratoconus and reported genetic loci in a Han chinese population. Ophthalmic Genet. 2015;36:132–136. doi: 10.3109/13816810.2015.1005317. PubMed DOI

Westra HJ, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC

McRae AF, et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci. Rep. 2018;8:17605. doi: 10.1038/s41598-018-35871-w. PubMed DOI PMC

Segre, A. V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet6, e1001058 (2010). PubMed PMC

Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC

Ratnapriya R, et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat. Genet. 2019;51:606–610. doi: 10.1038/s41588-019-0351-9. PubMed DOI PMC

Zhu Z, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 2018;9:224. doi: 10.1038/s41467-017-02317-2. PubMed DOI PMC

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...